15,843 research outputs found

    TWO NEW SPECIES OF GASTROPTERIDAE FROM GUAM, MARIANAS ISLANDS (OPISTHOBRANCHIA : CEPHALASPIDEA)

    Get PDF
    In 1964 Tokioka and Baba established the genus Sagaminopteron to accommodate one species, S. ornatum Tokioka and Baba, 1964. According to Tokioka and Baba Sagaminopteron differs from the Gastropteron in that the former has a radular formula of 9-12.1.0.1.9-12 with the first lateral having two prominent cusps on the inner edge of the main hook, whereas the latter has a radular formula of 4-6.1.0.1.4-6 and denticulations on the inner edge of the main hook of the first lateral. On the basis of these generic characteristics and external comparative descriptions with S. ornatum two new species have been identified from Guam: Sagaminopteron nigropunctatum and S. bilealbum. All external descriptions are from the living animals. We wish to thank Dr. Willard Hartman of the Peabody Museum of Natural History, Yale University, for identification of the sponges involved

    Principal sources and dispersal patterns of suspended particulate matter in nearshore surface waters of the northeast Pacific Ocean and the Hawaiian Islands

    Get PDF
    The author has identified the following significant results. ERTS-1 multispectral scanner imagery of the nearshore surface waters of the Northeast Pacific Ocean is proving to be a useful tool for determining source and dispersal of suspended particulate matter. The principal sources of the turbid water, seen best on the green and red bands, are river and stream effluents and actively eroding coastlines; secondary sources are waste effluents and production of planktonic organisms, but these may sometimes be masked by the very turbid plumes of suspended sediment being discharged into the nearshore zone during times of high river discharge. The configuration and distribution of the plumes of turbid water also can be used to infer near-surface current directions. Comparison of imagery of the nearshore water off the northern California coast from October 1972 and January 1973 shows a reversal of the near-surface currents, from predominantly south-setting in the fall (California Current) to north-setting in the winter (Davidson Current)

    On Vector Bundles of Finite Order

    Full text link
    We study growth of holomorphic vector bundles E over smooth affine manifolds. We define Finsler metrics of finite order on E by estimates on the holomorphic bisectional curvature. These estimates are very similar to the ones used by Griffiths and Cornalba to define Hermitian metrics of finite order. We then generalize the Vanishing Theorem of Griffiths and Cornalba to the Finsler context. We develop a value distribution theory for holomorphic maps from the projectivization of E to projective space. We show that the projectivization of E can be immersed into a projective space of sufficiently large dimension via a map of finite order.Comment: version 2 has some typos corrected; to appear in Manuscripta Mathematic

    Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida

    Get PDF
    Registered data sets were used to develop qualititative temperature and delta T maps of a band across north Florida and across south Florida for use with Carlson's boundary layer energy model balance model. Thermal inertia and moisture availability computations for north Florida are being used to investigate model sensitivity and to evaluate input parameters. Temperature differences of day-night HCMM overpasses clearly differentiate wetlands and uplands areas

    Traveling wave solutions in the Burridge-Knopoff model

    Full text link
    The slider-block Burridge-Knopoff model with the Coulomb friction law is studied as an excitable medium. It is shown that in the continuum limit the system admits solutions in the form of the self-sustained shock waves traveling with constant speed which depends only on the amount of the accumulated stress in front of the wave. For a wide class of initial conditions the behavior of the system is determined by these shock waves and the dynamics of the system can be expressed in terms of their motion. The solutions in the form of the periodic wave trains and sources of counter-propagating waves are analyzed. It is argued that depending on the initial conditions the system will either tend to synchronize or exhibit chaotic spatiotemporal behavior.Comment: 12 pages (ReVTeX), 7 figures (Postscript) to be published in Phys. Rev.

    Support varieties for selfinjective algebras

    Full text link
    Support varieties for any finite dimensional algebra over a field were introduced by Snashall-Solberg using graded subalgebras of the Hochschild cohomology. We mainly study these varieties for selfinjective algebras under appropriate finite generation hypotheses. Then many of the standard results from the theory of support varieties for finite groups generalize to this situation. In particular, the complexity of the module equals the dimension of its corresponding variety, all closed homogeneous varieties occur as the variety of some module, the variety of an indecomposable module is connected, periodic modules are lines and for symmetric algebras a generalization of Webb's theorem is true

    Beam Single-Spin Asymmetry in Semi-Inclusive Deep Inelastic Scattering

    Full text link
    We calculate, in a model, the beam spin asymmetry in semi-inclusive jet production in deep inelastic scattering. This twist-3, TT-odd observable is non-zero due to final state strong interactions. With reasonable choices for the parameters, one finds an asymmetry of several percent, about the size seen experimentally. We present the result both as an explicit asymmetry calculation and as a model calculation of the new transverse-momentum dependent distribution function gg^\perp.Comment: 10 pages, 6 figures; minor changes made in the discussion; version accepted for publicatio

    Simulation study of spatio-temporal correlations of earthquakes as a stick-slip frictional instability

    Full text link
    Spatio-temporal correlations of earthquakes are studied numerically on the basis of the one-dimensional spring-block (Burridge-Knopoff) model. As large events approach, the frequency of smaller events gradually increases, while, just before the mainshock, it is dramatically suppressed in a close vicinity of the epicenter of the upcoming mainshock, a phenomenon closely resembling the ``Mogi doughnut'

    Ground state correlations and mean-field in 16^{16}O: Part II

    Full text link
    We continue the investigations of the 16^{16}O ground state using the coupled-cluster expansion [exp(S)\exp({\bf S})] method with realistic nuclear interaction. In this stage of the project, we take into account the three nucleon interaction, and examine in some detail the definition of the internal Hamiltonian, thus trying to correct for the center-of-mass motion. We show that this may result in a better separation of the internal and center-of-mass degrees of freedom in the many-body nuclear wave function. The resulting ground state wave function is used to calculate the "theoretical" charge form factor and charge density. Using the "theoretical" charge density, we generate the charge form factor in the DWBA picture, which is then compared with the available experimental data. The longitudinal response function in inclusive electron scattering for 16^{16}O is also computed.Comment: 9 pages, 7 figure
    corecore