1,276 research outputs found

    Flood Frequency Estimation in Northern Sparse Data Regions: Completion Report

    Get PDF
    The primary objective of this project was to complete development of an arctic hydrologic model and to evaluate its usefulness in generating information useful for a design tool in estimation of peak flow discharges. The peak flow discharges studied were those generally analyzed and evaluated in the design of facilities for stream crossings.The work upon which this report is based was supported by funds (Project B-021 ALAS) provided by the United States Department of the Interior, Office of Water Resources Research, as authorized by Water Resources Research Act of 1964, Public Law 88-379, as amended

    A Northern Snowmelt Model

    Get PDF
    In early 1968, a large petroleum discovery was made in the Prudhoe Bay area of Alaska's Arctic Coastal Plain. This discovery has led Alaska into a period of development of unprecedented speed and magnitude. This development will require the construction of many engineering facilities which are affected by the water resources. The design of each of these requires an understanding of the hydrologic system, a system which is dominated in Alaska by low temperatures, high latitudes, large elevation differences and sparse data. The latter factor is unique to Alaska and makes application of common design techniques virtually impossible

    A Catalog of Hydroclimatological Data for Alaska's Coastal Zone

    Get PDF
    In order to perceive a better understanding of the interrelationships of the coastal zone water we proposed a research project which was to sort out many of the complex variables. The project was not begun due to the lack of sufficient funds. We did, however, begin a limited literature search and listing of hydroclimatological data sources of Alaska's coastal zone. We felt this would be a modest but useful start towards the larger study. It should also have some practical usefulness to others. This data catalog is a result of this initial study. Because of the wide variety of types of agency which collect data and the literally hundreds of sources through which they are reported, it is often quite bewildering for even experienced investigators to sort out what can be found and where. Although we are sure that the catalog is far from complete, we feel that it is a useful beginning towards an attempt to better understand the hydroclimatological processes in Alaska's coastal zone. We wish to invite contributions and criticisms which could lead to an improved and more comprehensive version at some future date.We gratefully acknowledge the support of the Sea Grant Program of the University of Alaska and the support and encouragement of its Director, David Hickok. The project also received support from the Office of Water Resources Research and the State of Alaska through the Institute of Water Resources at the University of Alaska

    Improvement of the Fairbanks Atmospheric Carbon Monoxide Transport Model -- A Program for Calibration, Verification and Implementation

    Get PDF
    Completion Report Prepared for the Research Section, Alaska Department of Transportation and Public FacilitiesIn the early 70s, state, local and federal officials in Fairbanks, Alaska, became concerned with the rising incidence of high carbon monoxide episodes. Because of that concern, the Alaska Department of Highways (forerunner of the Department of Transportation and Public Facilities) and the Fairbanks North Star Borough requested that the Institute of Water Resources undertake a study to develop a computer model capability for understanding the transport of carbon monoxide and other pollutants within the Fairbanks airshed. The work was completed in June of 1976. Two publications (Carlson and Fox, 1976; Norton and Carlson, 1976) describe the initial development, documentation and implementation of the computer model. The model, ACOSP (Atmospheric Carbon monOxide Simulation Program), describes the two-dimensional behavior of pollutants in the atmosphere via solution of the convection-diffusion equation using the finite element method of numerical analysis

    A Study of the Breakup Characteristics of the Chena River Basin Using ERTS Imagery: Completion Report

    Get PDF
    ERTS Project 110-5Snowmelt and rainfall floodinq is a major water resource problem in Alaska. At the present time, forecastinq of these floods is based on a sparse hydrological and climatological network. Numerous basins with drainage areas of 5,000 km2 and less remain completely ungaged. The lack of data causes uncertainty in the design of transportation schemes such as tile Trans-Alaska oil pipeline. This project studied the utility of using ERTS-l imagery as a source of additional data for the prediction of snowmelt runoff, the most dynamic hydroloqic event in arctic and subarctic basins. Snow distribution as determined from the satellite imagery was compared with values determined from the conventional snow course stations and with the results of a snowmelt energy model. The Chena River Basin was selected because of the availability of ground truth data for comparison. Very good agreement for snow distribution and rates of ablation was found between the ERTS-l imagery, the snowmelt model, and field measurements. Monitoring snowmelt rates for relatively small basins appears to be practical. The main limitation of the ERTS-l imagery is the interval of coverage. More frequent overflights providing coverage are needed for the study of transient hydrologic events. ERTS-l data is most useful when used in conjunction with snowmelt prediction models and existing snow course data. These results should prove very useful in preliminary assessment of hydrologic conditions in ungaged watersheds and will provide a tool for month-to-month volume forecasting.This work was supported by National Aeronautics and Space Administration, Grant NAS 5-21833

    User's guide for atmospheric carbon monoxide transport model

    Get PDF
    In the winter months of Fairbanks, Alaska, a highly stable air temperature inversion creates high levels of carbon monoxide (CO) concentrations. As an aid to understanding this problem, a CO transport computer model has been created which provides a useful tool when used in conjunction with other measurement and analytic studies of traffic, meteorology, emissions control, zoning, and parking management. The model is completely documented and illustrated with several examples. Named ACOSP (Atmospheric CO Simulation Program), it predicts expected CO concentrations within a specific geographic area for a defined set of CO sources. At the present time, the model is programmed to consider automobile emissions as the major CO source and may include estimates of stationary sources. The model is coded for computer solution in the FORTRAN programming language and uses the finite-element method of numerical solution of the basic convective-diffusion equations. Although it has a potential for real-time analysis and control, at the present time the model will be most valuable for investigating and understanding the physical processes which are responsible for high CO levels and for testing remedial control measures at high speed and low cost

    A Computer Model of the Tidal Phenomena in Cook Inlet, Alaska

    Get PDF
    The work upon which this report is based was supported by funds (Project A-028-ALAS) provided by the United States Department of the Interior, Office of Water Resources Research, as authorized under the Water Resources Act of 1964, as amended

    Water Balance of a Small Lake in a Permafrost Region

    Get PDF
    The work upon which this report is based was supported in part by funds (Project A-031-ALAS) provided by the United States Department of the Interior, Office of Water Resources Research, as authorized under the Water Resources Act of 1964, as amended

    Hydrology of the Central Arctic River Basins of Alaska

    Get PDF
    The work upon which this report is based was supported in part by funds (Project A-031-ALAS) provided by the United States Department of Interior, Office of Water Resources Research, as authorized under the Water Resources Act of 1964, as amended

    Thermal Tolerances of Interior Alaskan Arctic Grayling (Thymallus arcticus)

    Get PDF
    The work upon which this report is based was supported in part by funds (Project A-041-ALAS) provided by the United States Department of the Interior, Office of Water Resources Research, as authorized under the Water Resources Act of 1964, as amended
    • …
    corecore