8 research outputs found
Elastic contact between self-affine surfaces: Comparison of numerical stress and contact correlation functions with analytic predictions
Contact between an elastic manifold and a rigid substrate with a self-affine
fractal surface is reinvestigated with Green's function molecular dynamics.
Stress and contact autocorrelation functions (ACFs) are found to decrease
algebraically. A rationale is provided for the observed similarity in the
exponents for stress and contact ACFs. Both exponents differ substantially from
analytic predictions over the range of Hurst roughness exponents studied. The
effect of increasing the range of interactions from a hard sphere repulsion to
exponential decay is analyzed. Results for exponential interactions are
accurately described by recent systematic corrections to Persson's contact
mechanics theory. The relation between the area of simply connected contact
patches and the normal force is also studied. Below a threshold size the
contact area and force are consistent with Hertzian contact mechanics, while
area and force are linearly related in larger contact patches.Comment: 12 pages, 9 figure
Grain boundary motion assisted via radiation cascades in bcc Fe
Molecular-dynamic simulations were performed to study the influence of displacement cascades on grain boundary (GB) structure and stability in bcc Fe. A Σ=5, (310)[001] symmetric tilt boundary with a tilt angle of θ=36.9° was used for the simulations. We find that GB motion, either sliding or migration, is activated under the influence of displacement cascades at lower internal stresses as compared to the unirradiated GBs. We postulate that radiation-induced GB damage aids the nucleation mechanisms that trigger GB motion. Furthermore, radiation-induced GB sliding significantly relaxes internal stress and may provide a viable mechanism for promoting irradiation creep via GB accommodation processes
The autocorrelation function for island areas on self-affine surfaces
The spatial distribution of regions that lie above contours of constant height through a self-affine surface is studied as a function of the Hurst exponent H. If the surface represents a landscape, these regions correspond to islands. When the surface represents the height difference for contacting surfaces, the regions correspond to mechanical contacts in the common bearing area model. The autocorrelation function C(Delta r) is defined as the probability that points separated by Delta r are both within islands. The scaling of C has important implications for the stiffness and conductance of mechanical contacts. We find that its Fourier transform (C) over tilde (q) scales as a power of the wavevector magnitude q: (C) over tilde (q) alpha q(-mu) with mu = 2 + H rather than the value mu = 2 + 2H reported previously. An analytic argument for mu = 2 + H is presented using the distribution of areas contained in disconnected islands
Effects of focal vibration on changes in sports performance in amateur athletes: a randomized clinical trial
The aim of this study was to evaluate the effectiveness of a focal vibration protocol added to an activation protocol with active muscle contractions and to see what repercussions it has on sprint, countermovement jump (CMJ), and lower limb isometric strength. A double-blind randomized clinical trial was conducted in the Functional Anatomy Laboratory and the sample consisted of 70 athletes. The main outcome measures were knee extension force, CMJ, sprint, and surface electromyography. Repeated-measures analysis of variance revealed significant improvements. They were found in the within-group analysis for the Experimental Group in the isometric extension force (p < 0.001; η2 = 0.368), CMJ (p < 0.001; η2 = 0.301) and 30 m sprint (p < 0.001; η2 = 0.376). In the electromyography, there are changes in the Sham Group in all muscles, in CMJ and Sprint tests, and no differences in the Experimental Group, except for the RF muscle. In the between-group analysis, statistically significant differences were found only in favor of the Experimental Group in CMJ (p = 0.017; η2 = 0.81) and 30 m sprint (p < 0.001; η2 = 0.152). These results confirm a significant improvement in the sprint, CMJ performance, and quadriceps strength, after a focal vibration protocol, added to a muscle active contraction, compared to a focal vibration sham protocol. Therefore, our results suggest that the focal vibration can be a very useful tool in sports involving high-powered actions