1,156 research outputs found
Testing the Standard Model by precision measurement of the weak charges of quarks
In a global analysis of the latest parity-violating electron scattering
measurements on nuclear targets, we demonstrate a significant improvement in
the experimental knowledge of the weak neutral-current lepton-quark
interactions at low energy. The precision of this new result, combined with
earlier atomic parity-violation measurements, places tight constraints on the
size of possible contributions from physics beyond the Standard Model.
Consequently, this result improves the lower-bound on the scale of relevant new
physics to ~1 TeV.Comment: 4 pages, 3 figures; v2: further details on extraction of electroweak
parameters, new figur
Extracting nucleon strange and anapole form factors from world data
The complete world set of parity violating electron scattering data up to
Q^2~0.3 GeV^2 is analysed. We extract the current experimental determination of
the strange electric and magnetic form factors of the proton, as well as the
weak axial form factors of the proton and neutron, at Q^2 = 0.1 GeV^2. Within
experimental uncertainties, we find that the strange form factors are
consistent with zero, as are the anapole contributions to the axial form
factors. Nevertheless, the correlation between the strange and anapole
contributions suggest that there is only a small probability that these form
factors all vanish simultaneously.Comment: 4 pages, 3 figs; v2: version to appear in PR
Time-optimal CNOT between indirectly coupled qubits in a linear Ising chain
We give analytical solutions for the time-optimal synthesis of entangling
gates between indirectly coupled qubits 1 and 3 in a linear spin chain of three
qubits subject to an Ising Hamiltonian interaction with equal coupling plus
a local magnetic field acting on the intermediate qubit. The energy available
is fixed, but we relax the standard assumption of instantaneous unitary
operations acting on single qubits. The time required for performing an
entangling gate which is equivalent, modulo local unitary operations, to the
between the indirectly coupled qubits 1 and 3 is
, i.e. faster than a previous estimate based on a similar
Hamiltonian and the assumption of local unitaries with zero time cost.
Furthermore, performing a simple Walsh-Hadamard rotation in the Hlibert space
of qubit 3 shows that the time-optimal synthesis of the (which acts as the identity when the control qubit 1 is in the state
, while if the control qubit is in the state the target
qubit 3 is flipped as ) also requires the same
time .Comment: 9 pages; minor modification
Dynamical Generation of Spacetime Signature by Massive Quantum Fields on a Topologically Non-Trivial Background
The effective potential for a dynamical Wick field (dynamical signature)
induced by the quantum effects of massive fields on a topologically non-trivial
dimensional background is considered. It is shown that when the radius of
the compactified dimension is very small compared with (where
is a proper-time cutoff), a flat metric with Lorentzian signature is
preferred on . When the compactification radius
becomes larger a careful analysis of the 1-loop effective potential indicates
that a Lorentzian signature is preferred in both and and that these
results are relatively stable under metrical perturbations
Dynamical Determination of the Metric Signature in Spacetime of Nontrivial Topology
The formalism of Greensite for treating the spacetime signature as a
dynamical degree of freedom induced by quantum fields is considered for
spacetimes with nontrivial topology of the kind , for varying . It is shown that a dynamical origin for the Lorentzian
signature is possible in the five-dimensional space with small torus radius (periodic boundary conditions), as well as in
four-dimensional space with trivial topology. Hence, the possibility exists
that the early universe might have been of the Kaluza-Klein type, \ie
multidimensional and of Lorentzian signature.Comment: 10 pages, LaTeX file, 4 figure
Waves attractors in rotating fluids: a paradigm for ill-posed Cauchy problems
In the limit of low viscosity, we show that the amplitude of the modes of
oscillation of a rotating fluid, namely inertial modes, concentrate along an
attractor formed by a periodic orbit of characteristics of the underlying
hyperbolic Poincar\'e equation. The dynamics of characteristics is used to
elaborate a scenario for the asymptotic behaviour of the eigenmodes and
eigenspectrum in the physically relevant r\'egime of very low viscosities which
are out of reach numerically. This problem offers a canonical ill-posed Cauchy
problem which has applications in other fields.Comment: 4 pages, 5 fi
The Borexino Thermal Monitoring & Management System and simulations of the fluid-dynamics of the Borexino detector under asymmetrical, changing boundary conditions
A comprehensive monitoring system for the thermal environment inside the
Borexino neutrino detector was developed and installed in order to reduce
uncertainties in determining temperatures throughout the detector. A
complementary thermal management system limits undesirable thermal couplings
between the environment and Borexino's active sections. This strategy is
bringing improved radioactive background conditions to the region of interest
for the physics signal thanks to reduced fluid mixing induced in the liquid
scintillator. Although fluid-dynamical equilibrium has not yet been fully
reached, and thermal fine-tuning is possible, the system has proven extremely
effective at stabilizing the detector's thermal conditions while offering
precise insights into its mechanisms of internal thermal transport.
Furthermore, a Computational Fluid-Dynamics analysis has been performed, based
on the empirical measurements provided by the thermal monitoring system, and
providing information into present and future thermal trends. A two-dimensional
modeling approach was implemented in order to achieve a proper understanding of
the thermal and fluid-dynamics in Borexino. It was optimized for different
regions and periods of interest, focusing on the most critical effects that
were identified as influencing background concentrations. Literature
experimental case studies were reproduced to benchmark the method and settings,
and a Borexino-specific benchmark was implemented in order to validate the
modeling approach for thermal transport. Finally, fully-convective models were
applied to understand general and specific fluid motions impacting the
detector's Active Volume.Comment: arXiv admin note: substantial text overlap with arXiv:1705.09078,
arXiv:1705.0965
pi-NN Coupling Constants from NN Elastic Data between 210 and 800 Mev
High partial waves for and elastic scattering are examined
critically from 210 to 800 MeV. Non-OPE contributions are compared with
predictions from theory. There are some discrepancies, but sufficient agreement
that values of the coupling constants for exchange
and for charged exchange can be derived. Results are and , where the first error is statistical and the
second is an estimate of the likely systematic error, arising mostly from
uncertainties in the normalisation of total cross sections and
.Comment: 21 pages of LaTeX, UI-NTH-940
On the segmentation of astronomical images via level-set methods
Astronomical images are of crucial importance for astronomers since they
contain a lot of information about celestial bodies that can not be directly
accessible. Most of the information available for the analysis of these objects
starts with sky explorations via telescopes and satellites. Unfortunately, the
quality of astronomical images is usually very low with respect to other real
images and this is due to technical and physical features related to their
acquisition process. This increases the percentage of noise and makes more
difficult to use directly standard segmentation methods on the original image.
In this work we will describe how to process astronomical images in two steps:
in the first step we improve the image quality by a rescaling of light
intensity whereas in the second step we apply level-set methods to identify the
objects. Several experiments will show the effectiveness of this procedure and
the results obtained via various discretization techniques for level-set
equations.Comment: 24 pages, 59 figures, paper submitte
- …