2,102 research outputs found
Debt contracts with ex-ante and ex-post asymmetric information: an example.
We consider a simple model of lending and borrowing combining two informational problems: adverse selection and costly state verification. Our analysis highlights the interaction between these two informational problems. We notably show that the higher the monitoring cost, the less discriminating the optimal menu of contracts is.debt contracts, diversity of opinions, screening, costly monitoring, pooling.
Optimal transportation with traffic congestion and Wardrop equilibria
In the classical Monge-Kantorovich problem, the transportation cost only
depends on the amount of mass sent from sources to destinations and not on the
paths followed by this mass. Thus, it does not allow for congestion effects.
Using the notion of traffic intensity, we propose a variant taking into account
congestion. This leads to an optimization problem posed on a set of probability
measures on a suitable paths space. We establish existence of minimizers and
give a characterization. As an application, we obtain existence and variational
characterization of equilibria of Wardrop type in a continuous space setting
Derivatives with respect to metrics and applications: subgradient marching algorithm
This paper introduces a subgradient descent algorithm to compute a Riemannian metric that minimizes an energy involving geodesic distances. The heart of the method is the Subgradient Marching Algorithm to compute the derivative of the geodesic distance with respect to the metric. The geodesic distance being a concave function of the metric, this algorithm computes an element of the subgradient in O(N 2 log(N)) operations on a discrete grid of N points. It performs a front propagation that computes a subgradient of a discrete geodesic distance. We show applications to landscape modeling and to traffic congestion. Both applications require the maximization of geodesic distances under convex constraints, and are solved by subgradient descent computed with our Subgradient Marching. We also show application to the inversion of travel time tomography, where the recovered metric is the local minimum of a non-convex variational problem involving geodesic distance
Discriminative Parameter Estimation for Random Walks Segmentation
The Random Walks (RW) algorithm is one of the most e - cient and easy-to-use
probabilistic segmentation methods. By combining contrast terms with prior
terms, it provides accurate segmentations of medical images in a fully
automated manner. However, one of the main drawbacks of using the RW algorithm
is that its parameters have to be hand-tuned. we propose a novel discriminative
learning framework that estimates the parameters using a training dataset. The
main challenge we face is that the training samples are not fully supervised.
Speci cally, they provide a hard segmentation of the images, instead of a
proba- bilistic segmentation. We overcome this challenge by treating the opti-
mal probabilistic segmentation that is compatible with the given hard
segmentation as a latent variable. This allows us to employ the latent support
vector machine formulation for parameter estimation. We show that our approach
signi cantly outperforms the baseline methods on a challenging dataset
consisting of real clinical 3D MRI volumes of skeletal muscles.Comment: Medical Image Computing and Computer Assisted Interventaion (2013
An entropy minimization approach to second-order variational mean-field games
We propose an entropy minimization viewpoint on variational mean-field games with diffusion and quadratic Hamiltonian. We carefully analyze the time discretization of such problems, establish Gamma-convergence results as the time step vanishes and propose an efficient algorithm relying on this entropic interpretation as well as on the Sinkhorn scaling algorithm
- …