44 research outputs found

    Isoscapes of remnant and restored Hawaiian montane forests reveal differences in biological nitrogen fixation and carbon inputs

    Get PDF
    Deforestation and subsequent land-use conversion has altered ecosystems and led to negative effects on biodiversity. To ameliorate these effects, nitrogen-fixing (N2-fixing) trees are frequently used in the reforestation of degraded landscapes, especially in the tropics; however, their influence on ecosystem properties such as nitrogen (N) availability and carbon (C) stocks are understudied. Here, we use a 30-y old reforestation site of outplanted native N2-fixing trees (Acacia koa) dominated by exotic grass understory, and a neighboring remnant forest dominated by A. koa canopy trees and native understory, to assess whether restoration is leading to similar N and C biogeochemical landscapes and soil and plant properties as a target remnant forest ecosystem. We measured nutrient contents and isotope values (δ15N, δ13C) in soils, A. koa, and non-N2-fixing understory plants (Rubus spp.) and generated δ15N and δ13C isoscapes of the two forests to test for (1) different levels of biological nitrogen fixation (BNF) and its contribution to non-N2-fixing understory plants, and (2) the influence of historic land conversion and more recent afforestation on plant and soil δ13C. In the plantation, A. koa densities were higher and foliar δ15N values for A. koa and Rubus spp. were lower than in the remnant forest. Foliar and soil isoscapes also showed a more homogeneous distribution of low δ15N values in the plantation and greater influence of A. koa on neighboring plants and soil, suggesting greater BNF. Foliar δ13C also indicated higher water use efficiency (WUEi) in the plantation, indicative of differences in plant-water relations or soil water status between the two forest types. Plantation soil δ13C was higher than the remnant forest, consistent with greater contributions of exotic C4-pasture grasses to soil C pools, possibly due to facilitation of non-native grasses by the dense A. koa canopy. These findings are consequential for forest restoration, as they contribute to the mounting evidence that outplanting N2-fixing trees produces different biogeochemical landscapes than those observed in reference ecosystems, thereby influencing plant-soil interactions which can influence restoration outcomes

    Widening global variability in grassland biomass since the 1980s

    Get PDF
    Global change is associated with variable shifts in the annual production of aboveground plant biomass, suggesting localized sensitivities with unclear causal origins. Combining remotely sensed normalized difference vegetation index data since the 1980s with contemporary field data from 84 grasslands on 6 continents, we show a widening divergence in site-level biomass ranging from +51% to −34% globally. Biomass generally increased in warmer, wetter and species-rich sites with longer growing seasons and declined in species-poor arid areas. Phenological changes were widespread, revealing substantive transitions in grassland seasonal cycling. Grazing, nitrogen deposition and plant invasion were prevalent in some regions but did not predict overall trends. Grasslands are undergoing sizable changes in production, with implications for food security, biodiversity and carbon storage especially in arid regions where declines are accelerating

    Not novel, just better: competition between native and non-native plants in California grasslands that share species traits

    Get PDF
    Invasive plants have often been shown to possess novel traits such as the ability to fix nitrogen, access unused resource pools, or the ability to exude allelopathic chemicals. We describe a case of a successful invasion where the native and non-native species are very similar in most life-history characteristics including their growth forms, lifespan, and degree of summertime activity. Data from permanent transects suggest that exotic perennial grass invaders can establish into intact native-dominated grasslands, achieving cover values from 6 to 71% over several years. We also established a 4-year competition experiment to test the effect of each group—the native and non-native perennial grasses—on the other. Competitive interactions were found to consistently favor the non-native grasses: native perennial grass productivity was significantly lower in plots with exotic perennial grasses as compared to plots without exotic perennial grasses. By contrast, productivity of the exotic perennial grasses was not reduced by the presence of the native perennial grasses. These results suggest that competitive ability, rather than a unique trait, has contributed to the success of the exotic perennial grasses in our system. Management tools to control exotic perennial grass invasions are likely to negatively influence native perennial grass populations, as strategies that succeed against the invasive species may kill or reduce the native species as well

    Pre-fire (1985) and post-fire (2010) cumulative distributions.

    No full text
    <p>Pre-fire (1985) and post-fire (2010) cumulative distributions of NBR values from different fire pairs. a. 1999 Pine fire and 2006 Esperanza fire b. 2003 Cedar fire and 2007 Witch fire. c. 1996 Highway58 fire and 2003 Parkhill fire.</p

    Explanatory variables used in simple linear regression analysis.

    No full text
    <p>Explanatory variables used in simple linear regression analysis.</p
    corecore