147 research outputs found

    Understanding Pitch Perception as a Hierarchical Process with Top-Down Modulation

    Get PDF
    Pitch is one of the most important features of natural sounds, underlying the perception of melody in music and prosody in speech. However, the temporal dynamics of pitch processing are still poorly understood. Previous studies suggest that the auditory system uses a wide range of time scales to integrate pitch-related information and that the effective integration time is both task- and stimulus-dependent. None of the existing models of pitch processing can account for such task- and stimulus-dependent variations in processing time scales. This study presents an idealized neurocomputational model, which provides a unified account of the multiple time scales observed in pitch perception. The model is evaluated using a range of perceptual studies, which have not previously been accounted for by a single model, and new results from a neurophysiological experiment. In contrast to other approaches, the current model contains a hierarchy of integration stages and uses feedback to adapt the effective time scales of processing at each stage in response to changes in the input stimulus. The model has features in common with a hierarchical generative process and suggests a key role for efferent connections from central to sub-cortical areas in controlling the temporal dynamics of pitch processing

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction, and reports on seven research projects.National Institutes of Health Grant 5 R01 DC00194National Institutes of Health Grant P01 DC00119National Institutes of Health Grant F32 DC00073National Institutes of Health Grant 5 R01 DC00473National Institutes of Health Grant 2 R01 DC00238National Institutes of Health Grant 2 R01 DC00235National Institutes of Health Grant 5 P01 DC00361National Institutes of Health Grant T32 DC00006Whitaker Health Sciences Fun

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction and reports on six research projects.Health Sciences FundNational Institutes of Health Grant 5 R01 DC00194National Institutes of Health Grant 8 P01 DC00119National Institutes of Health Grant 5 R01 DC00473National Institutes of Health Grant 5 R01 DC00238National Institutes of Health Grant 5 T32 DC00006National Institutes of Health Grant 5 P01 DC00361National Institutes of Health Grant 5 R01 DC00235Peoples Republic of China FellowshipUnisys Corporation Doctoral FellowshipWhitaker Health Sciences Fellowshi

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction and reports on five research projects.National Institutes of Health Grant R01-DC-00194National Institutes of Health Grant P01-DC-00119Charles S. Draper Laboratory Contract DL-H-496015National Institutes of Health Grant R01 DC00238National Institutes of Health Grant R01-DC02258National Institutes of Health Grant T32-DC00038National Institutes of Health Grant RO1 DC00235National Institutes of Health Grant P01-DC00361National Institutes of Health Contract N01-DC-6-210

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction and reports on six research projects.National Institutes of Health Grant R01-DC-00194National Institutes of Health Contract P01-DC-00119National Institutes of Health Fellowship F32-DC00073National Institutes of Health Grant R01-DC00238National Institutes of Health Grant R01-DC00473National Institutes of Health Grant T32-DC00006National Institutes of Health Grant T32-DC00038National Institutes of Health Contract P01-DC00361National Institutes of Health Grant R01-DC00235National Institutes of Health Contract N01-DC2240

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction and reports on six research projects.National Institutes of Health Grant R01-DC-00194-11National Institutes of Health Grant P01-DC00119 Sub-Project 1National Institutes of Health Grant F32-DC00073-2National Institutes of Health Contract P01-DC00119National Institutes of Health Grant R01-DC00238National Institutes of Health Gramt R01-DC00473National Institutes of Health Grant P01-DC00119National Institutes of Health Grant T32-DC00038PNational Institutes of Health Grant P01-DC00361National Institutes of Health Grant 2RO1 DC00235National Institutes of Health Contract NO1-DC2-240

    Immunological and Molecular Correlates of Disease Recurrence after Liver Resection for Hepatocellular Carcinoma

    Get PDF
    The definition of the risk of hepatocellular carcinoma (HCC) recurrence after resection represents a central issue to improve the clinical management of patients. In this study we examined the prognostic relevance of infiltrating immune cell subsets in the tumor (TIL) and in nontumorous (NT) liver (LIL), and the expression of immune-related and lineage-specific mRNAs in HCC and NT liver derived from 42 patients. The phenotype of infiltrating cells was analyzed by flow cytometry, and mRNA expression in liver tissue was examined by real-time reverse transcription (RT)-PCR. The tumor immune microenvironment was enriched in inhibitory and dysfunctional cell subsets. Enrichment in CD4+ T-cells and in particular CD4 and CD8+ memory subsets within TIL was predictive of better overall survival (OS) and time to recurrence (TTR). Increased programmed death ligand 1 (PDL1) mRNA content and higher prevalence of invariant NKT (iNKT) cells were associated with shorter OS and TTR, respectively. By combined evaluation of infiltrating cell subsets along with mRNA profiling of immune and tumor related genes, we identified the intratumoral frequency of memory T-cells and iNKT-cells as well as PDL1 expression as the best predictors of clinical outcome. HCC infiltrate is characterized by the expression of molecules with negative regulatory function that may favor tumor recurrence and poor survival

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction and reports on seven research projects.National Institutes of Health Grant P01-DC-00119National Institutes of Health Grant R01-DC-00194National Institutes of Health Grant R01 DC00238National Institutes of Health Grant R01-DC02258National Institutes of Health Grant T32-DC00038National Institutes of Health Grant P01-DC00361National Institutes of Health Grant 2RO1 DC00235National Institutes of Health Contract N01-DC2240

    Across-Channel Timing Differences as a Potential Code for the Frequency of Pure Tones

    Get PDF
    When a pure tone or low-numbered harmonic is presented to a listener, the resulting travelling wave in the cochlea slows down at the portion of the basilar membrane (BM) tuned to the input frequency due to the filtering properties of the BM. This slowing is reflected in the phase of the response of neurons across the auditory nerve (AN) array. It has been suggested that the auditory system exploits these across-channel timing differences to encode the pitch of both pure tones and resolved harmonics in complex tones. Here, we report a quantitative analysis of previously published data on the response of guinea pig AN fibres, of a range of characteristic frequencies, to pure tones of different frequencies and levels. We conclude that although the use of across-channel timing cues provides an a priori attractive and plausible means of encoding pitch, many of the most obvious metrics for using that cue produce pitch estimates that are strongly influenced by the overall level and therefore are unlikely to provide a straightforward means for encoding the pitch of pure tones
    • …
    corecore