73 research outputs found

    The Impact of Spatial Separation on Married Migrants’ Health in Italy

    Get PDF
    Family separation due to migration is a life-changing event that can completely transform family structure and dynamics. Studies have mainly focussed on the emotional and psychological consequences of long-distance parenthood within transnational practices, while empirical evidence on the effects of transnational conjugality is still lacking. Based on data from the Social Condition and Integration of Foreign Citizens (SCIF) survey conducted by the Italian National Institute of Statistics - Istat, we studied the role of transnational conjugality on the self-reported health of married immigrants living in Italy. In addition, we examined specific situations that can lead to deeper health disadvantages for married immigrants living in transnational conjugality. Our results show that the negative effect on health of living a transnational parenthood is stronger for those immigrants that are not only living apart from their children but also are geographically separated from their spouses. Moreover, the effect of not living with a partner in Italy on selfperceived health is negative for immigrants who were not working, which seems to indicate a greater health disadvantage that is activated when immigrants are not able to economically achieve the goals of the migratory projec

    Effect of systemic therapies or best supportive care after disease progression to both nivolumab and cabozantinib in metastatic renal cell carcinoma: The Meet‐Uro 19BEYOND study

    Get PDF
    Background Nivolumab and cabozantinib are currently approved agents in metastatic renal cell carcinoma (mRCC) but there are no data available for patients progressing to both treatments. The aim of this study was to compare active therapeutic options and best supportive care (BSC) after progression to nivolumab and cabozantinib in mRCC. Methods In this retrospective study, we selected 50 patients from eight Italian centers. The primary endpoint of the study was the overall survival (OS) of patients on active treatment versus BSC. Secondary endpoints were the progression-free survival (PFS) and objective response rate (ORR). The efficacy of active therapy was also investigated. Results After progression to both nivolumab and cabozantinib, 57.1% of patients were given active treatment (mainly everolimus and sorafenib) while 42.9% received BSC. The median OS was 13 months (95% CI: 4-NR) in actively treated patients and 3 months (95% CI: 2–4) in BSC patients (p = 0.001). Patients treated with sorafenib had better disease control than those treated with everolimus (stable disease: 71.4% vs. 16.7%, progression disease: 14.3% vs. 58.3%; p = 0.03), with no significant differences in PFS (5 and 3 months, 95% CI: 1–6 vs. 2–5; p = 0.6) and OS (12 and 4 months, 95% CI: 3-NR vs. 2-NR; p = 0.2). Conclusion After treatment with both nivolumab and cabozantinib, the choice of a safe active systemic therapy offered better outcomes than BSC

    Prednisone vs high-dose dexamethasone in newly diagnosed adult primary immune thrombocytopenia: a randomized trial

    Get PDF
    A debate exists regarding which type of corticosteroids (standard-dose prednisone [PDN] or high-dose dexamethasone [HD-DXM]) is the best first-line treatment for adult patients with newly diagnosed untreated primary immune thrombocytopenia (pITP). An ad hoc study compared PDN with HD-DXM in newly diagnosed untreated patients with pITP (aged >= 18 but <= 80 years, platelet count of <= 20 or >20 but <50 x 10(9)/L, and bleeding score of >= 8). Patients were randomised to receive PDN 1 mg/kg per day from days 0 to 28 (Arm A) or HD-DXM 40 mg per day for 4 days, every 14 days, for 3 consecutive courses (Arm B). Fifty-nine of 113 patients (52.2%) were randomized to Arm A and 54 of 113 (47.8%) to Arm B. In evaluable patients, total initial responses (complete response [CR], partial response [PR], minimal response [MR]) were 44 of 56 (78.57%) in Arm A and 46 of 49 (93.88%) in Arm B at days 42 and 46, respectively (P = 0.0284). Total final responses (at day 180 from initial response) were 26 of 43 (60.47%) in Arm A and 23 of 39 (58.97%) in Arm B (P = 0.8907). Total persistent responses (at 12 months from initial response) were 25 of 31 (80.65%) in Arm A and 20 of 36 (55.56%) in Arm B (P = 0.0292). Seven relapses occurred. Median follow-up was 44.4 months. Overall survival was 100% at 48 months, overall disease-free survival was 81.11% at 48 months from day 180. PDN and pulsed HD-DXM were well tolerated; HD-DXM allows effective initial responses but less long lasting than PDN. This trial was registered at www.clinicaltrials.gov as #NCT00657410

    An explainable model of host genetic interactions linked to COVID-19 severity

    Get PDF
    We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.A multifaceted computational strategy identifies 16 genetic variants contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing dataset of a cohort of Italian patients

    Carriers of ADAMTS13 Rare Variants Are at High Risk of Life-Threatening COVID-19

    Get PDF
    Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage

    Gain- and Loss-of-Function CFTR Alleles Are Associated with COVID-19 Clinical Outcomes

    Get PDF
    Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19

    A genome-wide association study for survival from a multi-centre European study identified variants associated with COVID-19 risk of death

    Get PDF
    : The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 × 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 × 10-8). A total of 113 variants were associated with survival at P-value < 1.0 × 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways

    Pathogen-sugar interactions revealed by universal saturation transfer analysis

    Get PDF
    Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an “end-on” manner. uSTA-guided modeling and a high-resolution cryo–electron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis

    The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males

    Get PDF
    The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor
    • 

    corecore