43 research outputs found
Is Our Universe Natural?
It goes without saying that we are stuck with the universe we have.
Nevertheless, we would like to go beyond simply describing our observed
universe, and try to understand why it is that way rather than some other way.
Physicists and cosmologists have been exploring increasingly ambitious ideas
that attempt to explain why certain features of our universe aren't as
surprising as they might first appear.Comment: Invited review for Nature, 11 page
Interface localization near criticality
The theory of interface localization in near-critical planar systems at phase
coexistence is formulated from first principles. We show that mutual delocalization of two
interfaces, amounting to interfacial wetting, occurs when the bulk correlation length crit-
ical exponent \u3bd is larger than or equal to 1. Interaction with a boundary or defect line
involves an additional scale and a dependence of the localization strength on the distance
from criticality. The implications are particularly rich in the boundary case, where de-
localization proceeds through different renormalization patterns sharing the feature that
the boundary field becomes irrelevant in the delocalized regime. The boundary delocal-
ization (wetting) transition is shown to be continuous, with surface specific heat and layer
thickness exponents which can take values that we determine
Discrimination of Timbre in Early Auditory Responses of the Human Brain
The issue of how differences in timbre are represented in the neural response still has not been well addressed, particularly with regard to the relevant brain mechanisms. Here we employ phasing and clipping of tones to produce auditory stimuli differing to describe the multidimensional nature of timbre. We investigated the auditory response and sensory gating as well, using by magnetoencephalography (MEG).Thirty-five healthy subjects without hearing deficit participated in the experiments. Two different or same tones in timbre were presented through conditioning (S1) – testing (S2) paradigm as a pair with an interval of 500 ms. As a result, the magnitudes of auditory M50 and M100 responses were different with timbre in both hemispheres. This result might support that timbre, at least by phasing and clipping, is discriminated in the auditory early processing. The second response in a pair affected by S1 in the consecutive stimuli occurred in M100 of the left hemisphere, whereas both M50 and M100 responses to S2 only in the right hemisphere reflected whether two stimuli in a pair were the same or not. Both M50 and M100 magnitudes were different with the presenting order (S1 vs. S2) for both same and different conditions in the both hemispheres.Our results demonstrate that the auditory response depends on timbre characteristics. Moreover, it was revealed that the auditory sensory gating is determined not by the stimulus that directly evokes the response, but rather by whether or not the two stimuli are identical in timbre
Geometry and field theory in multi-fractional spacetime
We construct a theory of fields living on continuous geometries with
fractional Hausdorff and spectral dimensions, focussing on a flat background
analogous to Minkowski spacetime. After reviewing the properties of fractional
spaces with fixed dimension, presented in a companion paper, we generalize to a
multi-fractional scenario inspired by multi-fractal geometry, where the
dimension changes with the scale. This is related to the renormalization group
properties of fractional field theories, illustrated by the example of a scalar
field. Depending on the symmetries of the Lagrangian, one can define two
models. In one of them, the effective dimension flows from 2 in the ultraviolet
(UV) and geometry constrains the infrared limit to be four-dimensional. At the
UV critical value, the model is rendered power-counting renormalizable.
However, this is not the most fundamental regime. Compelling arguments of
fractal geometry require an extension of the fractional action measure to
complex order. In doing so, we obtain a hierarchy of scales characterizing
different geometric regimes. At very small scales, discrete symmetries emerge
and the notion of a continuous spacetime begins to blur, until one reaches a
fundamental scale and an ultra-microscopic fractal structure. This fine
hierarchy of geometries has implications for non-commutative theories and
discrete quantum gravity. In the latter case, the present model can be viewed
as a top-down realization of a quantum-discrete to classical-continuum
transition.Comment: 1+82 pages, 1 figure, 2 tables. v2-3: discussions clarified and
improved (especially section 4.5), typos corrected, references added; v4:
further typos correcte
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.
BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700