2,140 research outputs found

    Fatiguing Effects of Indirect Vibration Stimulation in Upper Limb Muscles- pre, post and during Isometric Contractions Superimposed on Upper Limb Vibration

    Get PDF
    © 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ , which permits unrestricted use, provided the original author and source are credited.Whole-body vibration and upper limb vibration (ULV) continue to gain popularity as exercise intervention for rehabilitation and sports applications. However, the fatiguing effects of indirect vibration stimulation are not yet fully understood. We investigated the effects of ULV stimulation superimposed on fatiguing isometric contractions using a purpose developed upper limb stimulation device. Thirteen healthy volunteers were exposed to both ULV superimposed to fatiguing isometric contractions (V) and isometric contractions alone Control (C). Both Vibration (V) and Control (C) exercises were performed at 80% of the maximum voluntary contractions. The stimulation used was 30 Hz frequency of 0.4 mm amplitude. Surface-electromyographic (EMG) activity of the Biceps Brachii, Triceps Brachii and Flexor Carpi Radialis were measured. EMG amplitude (EMGrms) and mean frequency (MEF) were computed to quantify muscle activity and fatigue levels. All muscles displayed significantly higher reduction in MEFs and a corresponding significant increase in EMGrms with the V than the Control, during fatiguing contractions (p < 0.05). Post vibration, all muscles showed higher levels of MEFs after recovery compared to the control. Our results show that near-maximal isometric fatiguing contractions superimposed on vibration stimulation lead to a higher rate of fatigue development compared to the isometric contraction alone in the upper limb muscles. Results also show higher manifestation of mechanical fatigue post treatment with vibration compared to the control. Vibration superimposed on isometric contraction not only seems to alter the neuromuscular function during fatiguing efforts by inducing higher neuromuscular load but also post vibration treatment.Peer reviewedFinal Published versio

    Training load and injury incidence over one season in adolescent Arab table tennis players : a pilot study

    Get PDF
    Background: It has been established that injury incidence data and training load in table tennis is somewhat limited. Objectives: The purpose of this study was to analyze and report training load and injury incidence. This was established over a full season in highly trained youth table tennis athletes. We further aimed to establish what variables related to training load have a statistically significant effect on injury in youth table tennis. Methods: Data was collected from eight male adolescent table tennis players of Arabic origin. Training and game time were monitored continuously throughout each training session and match. Heart rate was measured throughout and then subsequently analyzed to quantify internal training load. Results: Players were subjected to an average of 1901 h 33 min ± 44 h 30 min of training time and 140 h 0 min ± 11 h 29 min of game time over the season. Overall injury incidence was 8.3 (95% CI: 4.6 - 12.0), time-loss injuries 4.4 (95% CI: 1.9 - 6.9) and growth conditions 2.0 (95% CI: 0.6 - 3.3) per 1000 hours. Internal training loads quantified via the Edwards training impulse equation were significantly different between training weeks (P = 0.001), with lowest values around competition periods (P < 0.05). For every extra auxiliary unit of relative training load per minute during training, a significant increase (P = 0.014) in injury occurrence was present. Conclusions: Most of the injuries occurred during the first quarter of the year (65%), when training loads were highest. In conclusion, the results of this preliminary study showed that training loads increase during a season until competition period, with relative training load per minute being linked to the likelihood of injuries. The rate of overuse injuries and growth-related conditions were higher than previously reported in adolescents in other racket sports

    Upper limb vibration prototype with sports and rehabilitation applications : development, evaluation and preliminary study

    Get PDF
    Acknowledgment: This work was supported by the North East of Scotland Technology Seed Fund (NESTech) grant from Scottish Funding Council (SFC)Peer reviewedPublisher PD

    Hand-Tool-Tissue Interaction Forces in Neurosurgery for Haptic Rendering

    Get PDF
    Haptics provides sensory stimuli that represent the interaction with a virtual or telemanipulated object, and it is considered a valuable navigation and manipulation tool during tele-operated surgical procedures. Haptic feedback can be provided to the user via cutaneous information and kinesthetic feedback. Sensory subtraction removes the kinesthetic component of the haptic feedback, having only the cutaneous component provided to the user. Such a technique guarantees a stable haptic feedback loop, while it keeps the transparency of the tele-operation system high, which means that the system faithfully replicates and render back the user's directives. This work focuses on checking whether the interaction forces during a bench model neurosurgery operation can lie in the solely cutaneous perception of the human finger pads. If this assumption is found true, it would be possible to exploit sensory subtraction techniques for providing surgeons with feedback from neurosurgery. We measured the forces exerted to surgical tools by three neurosurgeons performing typical actions on a brain phantom, using contact force sensors, whilst the forces exerted by the tools to the phantom tissue were recorded using a load cell placed under the brain phantom box. The measured surgeon-tool contact forces were 0.01 - 3.49 N for the thumb and 0.01 - 6.6 N for index and middle finger, whereas the measured tool- tissue interaction forces were from six to eleven times smaller than the contact forces, i.e., 0.01 - 0.59 N. The measurements for the contact forces fit the range of the cutaneous sensitivity for the human finger pad, thus, we can say that, in a tele-operated robotic neurosurgery scenario, it would possible to render forces at the fingertip level by conveying haptic cues solely through the cutaneous channel of the surgeon's finger pads. This approach would allow high transparenc

    Electromyography Activity of Vastus Lateralis Muscle During Whole-Body Vibrations of Different Frequencies

    Get PDF

    Cryopreservation protocol for human biliary tree stem/progenitors, hepatic and pancreatic precursors

    Get PDF
    Human biliary tree stem/progenitor cells (hBTSCs) are being used for cell therapies of patients with liver cirrhosis. A cryopreservation method was established to optimize sourcing of hBTSCs for these clinical programs and that comprises serum-free Kubota's Medium (KM) supplemented with 10% dimethyl sulfoxide (DMSO), 15% human serum albumin (HSA) and 0.1% hyaluronans. Cryopreserved versus freshly isolated hBTSCs were similar in vitro with respect to self-replication, stemness traits, and multipotency. They were able to differentiate to functional hepatocytes,cholangiocytes or pancreatic islets, yielding similar levels of secretion of albumin or of glucose-inducible levels of insulin. Cryopreserved versus freshly isolated hBTSCs were equally able to engraft into immunocompromised mice yielding cells with human-specific gene expression and human albumin levels in murine serum that were higher for cryopreserved than for freshly isolated hBTSCs. The successful cryopreservation of hBTSCs facilitates establishment of hBTSCs cell banking offering logistical advantages for clinical programs for treatment of liver diseases

    Electromyographic assessment of muscle fatigue during isometric vibration training at varying frequencies

    Get PDF
    Resistance exercise is essential to improve or maintain muscle performance. Vibration training has been suggested as an alternative option for muscle conditioning, aiming especially at improving muscle strength and power. Several studies link the effects of vibration training to enhanced neuromuscular stimulation, measured by electromyography (EMG) and typically ascribed to involuntary reflex mechanisms. However, the underlying mechanisms are still unclear, limiting the use of vibration training. This paper proposes additional methods to analyze the mechanisms involved in vibration training. A dedicated measurement setup was realized to relate vibration parameters to muscle fatigue in the biceps brachii. Fatigue is estimated by EMG mean frequency and conduction velocity assessments as well as by maximum voluntary contraction (MVC) force measurements. A modified maximum likelihood algorithm is proposed for the conduction velocity estimation based on high-density EMG recording. Five volunteers performed four isometric contractions of 50 s at 80% MVC with no vibration (control) and with superimposed vibration at 20, 30, and 40 Hz. Fatigue was estimated from the decay of force, EMG mean frequency, and EMG conduction velocity. 30-Hz vibrations represented the most fatiguing stimulus. Our preliminary results also show a better correlation between force and conduction velocity decay than between force and mean frequency decay, indicating the former as a better EMG indicator of fatigue. The proposed methods provide important advancements for the analysis of vibration exercise and guidance towards the definition of optimal training protocols

    Electromyographic assessment of muscle fatigue during isometric vibration training at varying frequencies

    Get PDF
    Resistance exercise is essential to improve or maintain muscle performance. Vibration training has been suggested as an alternative option for muscle conditioning, aiming especially at improving muscle strength and power. Several studies link the effects of vibration training to enhanced neuromuscular stimulation, measured by electromyography (EMG) and typically ascribed to involuntary reflex mechanisms. However, the underlying mechanisms are still unclear, limiting the use of vibration training. This paper proposes additional methods to analyze the mechanisms involved in vibration training. A dedicated measurement setup was realized to relate vibration parameters to muscle fatigue in the biceps brachii. Fatigue is estimated by EMG mean frequency and conduction velocity assessments as well as by maximum voluntary contraction (MVC) force measurements. A modified maximum likelihood algorithm is proposed for the conduction velocity estimation based on high-density EMG recording. Five volunteers performed four isometric contractions of 50 s at 80% MVC with no vibration (control) and with superimposed vibration at 20, 30, and 40 Hz. Fatigue was estimated from the decay of force, EMG mean frequency, and EMG conduction velocity. 30-Hz vibrations represented the most fatiguing stimulus. Our preliminary results also show a better correlation between force and conduction velocity decay than between force and mean frequency decay, indicating the former as a better EMG indicator of fatigue. The proposed methods provide important advancements for the analysis of vibration exercise and guidance towards the definition of optimal training protocols
    corecore