416 research outputs found
Controlling quantum transport through a single molecule
We investigate multi-terminal quantum transport through single monocyclic
aromatic annulene molecules, and their derivatives, using the nonequilibrium
Green function approach in the self-consistent Hartree-Fock approximation. A
new device concept, the Quantum Interference Effect Transistor (QuIET) is
proposed, exploiting perfect destructive interference stemming from molecular
symmetry, and controlling current flow by introducing decoherence and/or
elastic scattering that break the symmetry. This approach overcomes the
fundamental problems of power dissipation and environmental sensitivity that
beset many nanoscale device proposals.Comment: 4 pages, 5 figure
Universality of Decay out of Superdeformed Bands in the 190 Mass Region
Superdeformed nuclei in the 190 mass region exhibit a striking universality
in their decay-out profiles. We show that this universality can be explained in
the two-level model of superdeformed decay as related to a strong separation of
energy scales: a higher scale related to the nuclear interactions, and a lower
scale caused by electromagnetic decay. Furthermore, we present the results of
the two-level model for all decays for which sufficient data are known,
including statistical extraction of the matrix element for tunneling through
the potential barrier.Comment: 7 pages, 3 figures. v2: some minor clarifications, minor correction
to Fig.
How to measure the spreading width for decay of superdeformed nuclei
A new expression for the branching ratio for the decay via the E1 process in
the normal-deformed band of superdeformed nuclei is given within a simple
two-level model. Using this expression, the spreading or tunneling width
Gamma^downarrow for superdeformed decay can be expressed entirely in terms of
experimentally known quantities. We show how to determine the tunneling matrix
element V from the measured value of Gamma^downarrow and a statistical model of
the energy levels. The accuracy of the two-level approximation is verified by
considering the effects of the other normal-deformed states.Comment: 4 pages, 4 figure
Intensity profiles of superdeformed bands in Pb isotopes in a two-level mixing model
A recently developed two-level mixing model of the decay out of superdeformed bands is applied to examine the loss of flux from the yrast superdeformed bands in Pb192, Pb194, and Pb196. Probability distributions for decay to states at normal deformations are calculated at each level. The sensitivity of the results to parameters describing the levels at normal deformation and their coupling to levels in the superdeformed well is explored. It is found that except for narrow ranges of the interaction strength coupling the states, the amount of intensity lost is primarily determined by the ratio of γ decay widths in the normal and superdeformed wells. It is also found that while the model can accommodate the observed fractional intensity loss profiles for decay from bands at relatively high excitation, it cannot accommodate the similarly abrupt decay from bands at lower energies if standard estimates of the properties of the states in the first minimum are employed
Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies
‘The definitive version is available at www3.interscience.wiley.com '. Copyright Royal Astronomical Society. DOI: 10.1111/j.1365-2966.2009.15383.xWe investigate a class of rapidly growing emission line galaxies, known as 'Green Peas', first noted by volunteers in the Galaxy Zoo project because of their peculiar bright green colour and small size, unresolved in Sloan Digital Sky Survey imaging. Their appearance is due to very strong optical emission lines, namely [O iii]λ5007 Å, with an unusually large equivalent width of up to ∼1000 Å. We discuss a well-defined sample of 251 colour-selected objects, most of which are strongly star forming, although there are some active galactic nuclei interlopers including eight newly discovered narrow-line Seyfert 1 galaxies. The star-forming Peas are low-mass galaxies (M∼ 108.5–1010 M⊙) with high star formation rates (∼10 M⊙ yr−1) , low metallicities (log[O/H]+ 12 ∼ 8.7) and low reddening [ E(B−V) ≤ 0.25 ] and they reside in low-density environments. They have some of the highest specific star formation rates (up to ∼10−8 yr−1 ) seen in the local Universe, yielding doubling times for their stellar mass of hundreds of Myr. The few star-forming Peas with Hubble Space Telescope imaging appear to have several clumps of bright star-forming regions and low surface density features that may indicate recent or ongoing mergers. The Peas are similar in size, mass, luminosity and metallicity to luminous blue compact galaxies. They are also similar to high-redshift ultraviolet-luminous galaxies, e.g. Lyman-break galaxies and Lyα emitters, and therefore provide a local laboratory with which to study the extreme star formation processes that occur in high-redshift galaxies. Studying starbursting galaxies as a function of redshift is essential to understanding the build up of stellar mass in the Universe.Peer reviewe
- …