31 research outputs found

    PBjam: A Python package for automating asteroseismology of solar-like oscillators

    Full text link
    Asteroseismology is an exceptional tool for studying stars by using the properties of observed modes of oscillation. So far the process of performing an asteroseismic analysis of a star has remained somewhat esoteric and inaccessible to non-experts. In this software paper we describe PBjam, an open-source Python package for analyzing the frequency spectra of solar-like oscillators in a simple but principled and automated way. The aim of PBjam is to provide a set of easy-to-use tools to extract information about the radial and quadrupole oscillations in stars that oscillate like the Sun, which may then be used to infer bulk properties such as stellar mass, radius and age or even structure. Asteroseismology and its data analysis methods are becoming increasingly important as space-based photometric observatories are producing a wealth of new data, allowing asteroseismology to be applied in a wide range of contexts such as exoplanet, stellar structure and evolution, and Galactic population studies.Comment: 12 Pages, 4 figures. Accepted for publication in AJ. Associated software available at https://doi.org/10.5281/zenodo.430007

    Detection and Characterization of Oscillating Red Giants: First Results from the TESS Satellite

    Get PDF
    Since the onset of the "space revolution" of high-precision high-cadence photometry, asteroseismology has been demonstrated as a powerful tool for informing Galactic archeology investigations. The launch of the NASA Transiting Exoplanet Survey Satellite (TESS) mission has enabled seismic-based inferences to go full sky-providing a clear advantage for large ensemble studies of the different Milky Way components. Here we demonstrate its potential for investigating the Galaxy by carrying out the first asteroseismic ensemble study of red giant stars observed by TESS. We use a sample of 25 stars for which we measure their global asteroseimic observables and estimate their fundamental stellar properties, such as radius, mass, and age. Significant improvements are seen in the uncertainties of our estimates when combining seismic observables from TESS with astrometric measurements from the Gaia mission compared to when the seismology and astrometry are applied separately. Specifically, when combined we show that stellar radii can be determined to a precision of a few percent, masses to 5%-10%, and ages to the 20% level. This is comparable to the precision typically obtained using end-of-mission Kepler data

    What is the value and impact of quality and safety teams? A scoping review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to conduct a scoping review of the literature about the establishment and impact of quality and safety team initiatives in acute care.</p> <p>Methods</p> <p>Studies were identified through electronic searches of Medline, Embase, CINAHL, PsycINFO, ABI Inform, Cochrane databases. Grey literature and bibliographies were also searched. Qualitative or quantitative studies that occurred in acute care, describing how quality and safety teams were established or implemented, the impact of teams, or the barriers and/or facilitators of teams were included. Two reviewers independently extracted data on study design, sample, interventions, and outcomes. Quality assessment of full text articles was done independently by two reviewers. Studies were categorized according to dimensions of quality.</p> <p>Results</p> <p>Of 6,674 articles identified, 99 were included in the study. The heterogeneity of studies and results reported precluded quantitative data analyses. Findings revealed limited information about attributes of successful and unsuccessful team initiatives, barriers and facilitators to team initiatives, unique or combined contribution of selected interventions, or how to effectively establish these teams.</p> <p>Conclusions</p> <p>Not unlike systematic reviews of quality improvement collaboratives, this broad review revealed that while teams reported a number of positive results, there are many methodological issues. This study is unique in utilizing traditional quality assessment and more novel methods of quality assessment and reporting of results (SQUIRE) to appraise studies. Rigorous design, evaluation, and reporting of quality and safety team initiatives are required.</p

    Detection and Characterization of Oscillating Red Giants: First Results from the TESS Satellite

    Get PDF
    Since the onset of the "space revolution" of high-precision high-cadence photometry, asteroseismology has been demonstrated as a powerful tool for informing Galactic archeology investigations. The launch of the NASA Transiting Exoplanet Survey Satellite (TESS) mission has enabled seismic-based inferences to go full sky—providing a clear advantage for large ensemble studies of the different Milky Way components. Here we demonstrate its potential for investigating the Galaxy by carrying out the first asteroseismic ensemble study of red giant stars observed by TESS. We use a sample of 25 stars for which we measure their global asteroseimic observables and estimate their fundamental stellar properties, such as radius, mass, and age. Significant improvements are seen in the uncertainties of our estimates when combining seismic observables from TESS with astrometric measurements from the Gaia mission compared to when the seismology and astrometry are applied separately. Specifically, when combined we show that stellar radii can be determined to a precision of a few percent, masses to 5%-10%, and ages to the 20% level. This is comparable to the precision typically obtained using end-of-mission Kepler data

    Determinação da área foliar em videira cultivar Niagara Rosada

    No full text
    corecore