14 research outputs found
Structural and elemental analysis of the freshwater, low-Mg calcite coralline alga <i>pneophyllum cetinaensis</i>
Coralline algae are one of the most diversified groups of red algae and represent a major component of marine benthic habitats from the poles to the tropics. This group was believed to be exclusively marine until 2016, when the first freshwater coralline algae Pneophyllum cetinaensis was discovered in the Cetina River, southern Croatia. While several studies investigated the element compositions of marine coralline algal thalli, no information is yet available for the freshwater species. Using XRD, LA-ICP-MS and nano indentation, this study presents the first living low-Mg calcite coralline algae with Mg concentrations ten times lower than is common for the average marine species. Despite the lower Mg concentrations, hardness and elastic modulus (1.71 ± 1.58 GPa and 29.7 ± 18.0 GPa, respectively) are in the same range as other marine coralline algae, possibly due to other biogenic impurities. When compared to marine species, Ba/Ca values were unusually low, even though Ba concentrations are generally higher in rivers than in seawater. These low values might be linked to different physical and chemical characteristics of the Cetina River
Morphological and molecular assessment of Lithophyllum okamurae with the description of L. neo-okamurae sp. nov. (Corallinales, Rhodophyta)
Lithophyllum okamurae has been widely reported in the Pacific Ocean with identification based on morpho-anatomical observations. Two infraspecific taxa, L. okamurae f. okamurae and f. angulare, described from Japan, have been recorded in the temperate region of Japan. We assessed branched Lithophyllum samples morphologically referable to L. okamurae using morpho-anatomical data and DNA sequences (psbA, rbcL and partial LSU rDNA) obtained from herbarium specimens, including type material, as well as recently field-collected material in Japan. The molecular analyses showed that these ‘L. okamurae’ samples contained two species: L. okamurae and a cryptic new species which we describe as L. neo-okamurae sp. nov. Because the holotype of L. okamurae f. angulare was conspecific with original material cited in the protologue of L. okamurae, it is a heterotypic synonym of L. okamurae f. okamurae. Lithophyllum okamurae and L. neo-okamurae were morphologically similar in having warty, lumpy and fruticose thalli and in often forming rhodoliths. Lithophyllum okamurae can be morpho-anatomically distinguished from L. neo-okamurae by the thallus with tapering or plate-like protuberances (knobby protuberances in the latter) and by having smaller tetrasporangial conceptacle chambers (167–314 μm; 248–380 μm in L. neo-okamurae). Our LSU rDNA sequence data from L. okamurae f. angulare (=L. okamurae f. okamurae) was identical to that of the type of L. margaritae, which has nomenclatural priority over L. okamurae. However, considering that psbA and rbcL sequences of L. margaritae type material could not be generated in the present study, we refrain, for the moment, from proposing the taxonomic synonymy between these two taxa until the status of L. margaritae and its synonyms from the type locality (Gulf of California) are clarified.This research was mainly supported by Japan Society for the Promotion of Science (JSPS KAKENHI Grant Number 26850123, 17K07908) to AK
Spatial patterns and drivers of benthic community structure on the northern Adriatic biogenic reefs
The northern Adriatic Sea (NAS) hosts numerous biogenic subtidal reefs that are considered biodiversity hotspots. Several studies have already investigated the origin and biodiversity of these reefs. However, many of them are still unexplored and further knowledge is needed for their conservation. Here, the spatial variability, epibenthic community structure, and environmental features that characterize these habitats were investigated. Fifteen randomly selected reefs were sampled between 2013 and 2017, including some remote sites that have never been studied before. A fuzzy k-means clustering method and redundancy analysis were used to find similarities among sites in terms of epibenthic assemblages and to model relationships with abiotic variables. The results showed that these reefs are highly heterogeneous in terms of species composition and geomorphological features. The results were also consistent with previous studies and highlighted three main types of benthic assemblages defined by the dominance of different organisms, mainly reflecting the coastal-offshore gradient: nearshore reefs, generally dominated by stress-tolerant species; reefs at a middle distance from the coast, characterized by sponges, non-calcareous encrusting algae and ascidians; offshore reefs, dominated by reef builders. However, distance from the coast was not the only factor affecting species distribution, as other local factors and environmental characteristics also played a role. This kind of biogenic reefs in temperate seas are still poorly known. The present work contributed to shed further light on these habitats, by complementing the results of previous studies on their natural diversity, highlighting the specificity of the epibenthic communities of NAS reefs and the need to improve current, still inadequate, conservation measures
Effects of Natural and Anthropogenic Stressors on Fucalean Brown Seaweeds Across Different Spatial Scales in the Mediterranean Sea
Este artículo contiene 14 páginas, 8 figuras, 3 tablas.Algal habitat-forming forests composed of fucalean brown seaweeds (Cystoseira, Ericaria, and Gongolaria) have severely declined along the Mediterranean coasts, endangering the maintenance of essential ecosystem services. Numerous factors determine the loss of these assemblages and operate at different spatial scales, which must be identified to plan conservation and restoration actions. To explore the critical stressors (natural and anthropogenic) that may cause habitat degradation, we investigated (a) the patterns of variability of fucalean forests in percentage cover (abundance) at three spatial scales (location, forest, transect) by visual estimates and or photographic sampling to identify relevant spatial scales of variation, (b) the correlation between semi-quantitative anthropogenic stressors, individually or cumulatively (MA-LUSI index), including natural stressors (confinement, sea urchin grazing), and percentage cover of functional groups (perennial, semi-perennial) at forest spatial scale. The results showed that impacts from mariculture and urbanization seem to be the main stressors affecting habitat-forming species. In particular, while mariculture, urbanization, and cumulative anthropogenic stress negatively correlated with the percentage cover of perennial fucalean species, the same stressors were positively correlated with the percentage cover of the semi-perennial Cystoseira compressa and C. compressa subsp. pustulata. Our results indicate that human impacts can determine spatial patterns in these fragmented and heterogeneous marine habitats, thus stressing the need of carefully considering scale-dependent ecological processes to support conservation and restoration.This study was supported by the European Union’s EASME
(Executive Agency for Small and Medium Enterprise) and
EMFF (European Maritime and Fisheries fund) as part of
the project AFRIMED, “Algal Forest Restoration in the
Mediterranean Sea” (under grant agreement no. 789059), http://
afrimed-project.eu/.Peer reviewe
Species diversity and molecular phylogeny of non-geniculate coralline algae (Corallinophycidae, Rhodophyta) from Taoyuan algal reefs in northern Taiwan, including Crustaphytum gen. nov. and three new species
In Taiwan the algal reefs in Taoyuan County are the largest, composed of recent and fossil non-geniculate coralline algae. However, their diversity and phylogenetics in the region have never been documented. In this study, we analyzed the phylogenetic relationships of the non-geniculate coralline algae species collected from Taoyuan algal reefs and related non-geniculate species from other places in Taiwan and around the world based on psbA and SSU sequences. The molecular analyses revealed that at least 12 non-geniculate coralline species belonging in six evolutionary clades (Harveylithon, Lithophyllum, Pneophyllum, Crustaphytum gen. nov., and Phymatolithon, Sporolithon) occur in Taoyuan algal reefs. Eleven of these species do not match any described species and one (Lithophyllum margaritae) is a new record for the marine flora of Taiwan. We also describe a new genus (Crustaphytum gen. nov.) and three new non-geniculate coralline species (Crustaphytum pacificum sp. nov., Harveylithon rosea sp. nov., and Phymatolithon margoundulatus sp. nov.) for the most dominant and commonly seen species revealed by the molecular analyses. Among the latter three species, P. margoundulatus is only found in Taoyuan County and is the most dominant species there, comprising over 30% of the total cover, whereas C. pacificum has the widest distribution in the western Pacific Ocean (Taiwan and New Caledonia). Harveylithon rosea is a common species occurring in both algal reefs and rocky shores in the northern Taiwan. The other undescribed CCA species will be published when more specimens with reproductive structures are collected
Establishing temperate crustose Early Holocene coralline algae as archives for palaeoenvironmental reconstructions of the shallow water habitats of the Mediterranean Sea
Over the past decades, coralline algae have increasingly been used as archives of palaeoclimate information due to their seasonal growth bands and their vast distribution from high latitudes to the tropics. Traditionally, these reconstructions have been performed mainly on high latitude species, limiting the geographical area of their potential use. Here we assess the use of temperate crustose fossil coralline algae from shallow water habitats for palaeoenvironmental reconstruction to generate records of past climate change. We determine the potential of three different species of coralline algae, Lithothamnion minervae, Lithophyllum stictaeforme and Mesophyllum philippii, with different growth patterns, as archives for pH (δ11B) and temperature (Mg/Ca) reconstruction in the Mediterranean Sea. Mg concentration is driven by temperature but modulated by growth rate, which is controlled by species‐specific and intraspecific growth patterns. L. minervae is a good temperature recorder, showing a moderate warming trend in specimens from 11.37 cal ka BP (from 14.2 ± 0.4°C to 14.9 ± 0.15°C) to today. In contrast to Mg, all genera showed consistent values of boron isotopes (δ11B) suggesting a common control on boron incorporation. The recorded δ11B in modern and fossil coralline specimens is in agreement with literature data about early Holocene pH, opening new perspectives of coralline‐based, high‐resolution pH reconstructions in deep time
Distribution and Characterization of Deep Rhodolith Beds off the Campania coast (SW Italy, Mediterranean Sea)
Rhodolith beds (RBs) are bioconstructions characterized by coralline algae, which provide habitat for several associated species. Mediterranean RBs are usually located in the mesophotic zone (below 40 m), and thus are frequently remote and unexplored. Recently, the importance and vulnerability of these habitats have been recognized by the European Community and more attention has been drawn to their investigation and conservation. This study reports the results of an extensive monitoring program, carried out within the Marine Strategy Framework Directive (2008/56/EC), in six sites off the Campania coast (Italy, Mediterranean Sea). New insights were given into the distribution, cover, vitality (i.e., live/dead rhodolith ratio), structural complexity, and coralline algae composition of RBs. Remotely operated vehicles (ROV) investigations allowed the description of several RBs, and the discovery of a RB with rhodolith cover >65% offshore the Capri Island. Only two sites (Secchitiello and Punta Campanella) showed a very low mean cover of live rhodoliths (<10%); hence, not being classifiable as RBs. The collected rhodoliths were mostly small pralines (~2 cm), spheroidal to ellipsoidal, with growth-forms ranging from encrusting/warty to fruticose/lumpy. Coralline algae identification revealed a high diversity within each bed, with a total of 13 identified taxa. The genus Lithothamnion dominated all sites, and Phymatolithon calcareum and Lithothamnion corallioides, protected by the Habitats Directive (92/43/EEC), were detected in all RBs
Pachyseris inattesa sp. n. (Cnidaria, Anthozoa, Scleractinia): a new reef coral species from the Red Sea and its phylogenetic relationships
A new scleractinian coral species, Pachyseris inattesa sp. n., is described from the Red Sea. Despite a superficial resemblance with some species in the agariciid genus Leptoseris with which it has been previously confused, P. inattesa sp. n. has micro-morphological characters typical of the genus Pachyseris. This genus, once part of the Agariciidae, is comprised of five extant species and is widely distributed throughout the tropical Indo-Pacific. It is currently incertae sedis as a result of recent molecular analysis and appears to be closely related to the Euphylliidae. A molecular phylogenetic reconstruction including P. inattesa sp. n., the genus type species P. rugosa, and P. speciosa, all present in the Red Sea, was performed using the mitochondrial intergenic spacer between COI and 16S-rRNA. The results confirm that P. inattesa sp. n. is a monophyletic lineage closely related to the other Pachyseris species examined
Revision of Corallinaceae (Corallinales, Rhodophyta) : recognizing Dawsoniolithon gen. nov., Parvicellularium gen. nov and Chamberlainoideae subfam. nov containing Chamberlainium gen. nov. and pneophyllum
A multi-gene (SSU, LSU, psbA, and COI) molecular phylogeny of the family Corallinaceae (excluding the subfamilies Lithophylloideae and Corallinoideae) showed a paraphyletic grouping of six monophyletic clades. Pneophyllum and Spongites were reassessed and recircumscribed using DNA sequence data integrated with morpho-anatomical comparisons of type material and recently collected specimens. We propose Chamberlainoideae subfam. nov., including the type genus Chamberlainium gen. nov., with C.tumidum comb. nov. as the generitype, and Pneophyllum. Chamberlainium is established to include several taxa previously ascribed to Spongites, the generitype of which currently resides in Neogoniolithoideae. Additionally we propose two new genera, Dawsoniolithon gen. nov. (Metagoniolithoideae), with D.conicum comb. nov. as the generitype and Parvicellularium gen. nov. (subfamily incertae sedis), with P.leonardi sp. nov. as the generitype. Chamberlainoideae has no diagnostic morpho-anatomical features that enable one to assign specimens to it without DNA sequence data, and it is the first subfamily to possess both Type 1 (Chamberlainium) and Type 2 (Pneophyllum) tetra/bisporangial conceptacle roof development. Two characters distinguish Chamberlainium from Spongites: tetra/biasporangial conceptacle chamber diameter (300m in Spongites) and tetra/bisporangial conceptacle roof thickness (8 cells in Spongites). Two characters also distinguish Pneophyllum from Dawsoniolithon: tetra/bisporangial conceptacle roof thickness (8 cells in Dawsoniolithon) and thallus construction (dimerous in Pneophyllum vs. monomerous in Dawsoniolithon)