19 research outputs found

    Étude sur la prolifĂ©ration de la micro algue Alexandrium minutum en rade de Brest. Projet Daoulex. Rapport d’avancement n° 2 : Analyse des traces biologiques d’Alexandrium minutum dans les sĂ©diments de la Rade de Brest.

    No full text
    Suite Ă  l’efflorescence de grande ampleur d’Alexandrium minutum et des Ă©vĂ©nements toxiques associĂ©s en Rade de Brest en 2012, un projet a Ă©tĂ© montĂ© avec la RĂ©gion dans le cadre du dĂ©veloppement du port de Brest, pour Ă©lucider les contrĂŽles de cette efflorescence. De juillet Ă  aoĂ»t 2013, l’Ifremer a organisĂ© un Ă©chantillonnage serrĂ© dans l’estuaire de Daoulas, zone la plus touchĂ©e en 2012 (rapport d’avancement n°1). Une autre partie de ce projet vise Ă  la dĂ©tection (rapport d’avancement n°2) et Ă  la quantification (rapport d’avancement n°3) des traces biologiques d’A. minutum dans les sĂ©diments de surface en diffĂ©rentes stations de la Rade de Brest prĂ©sentant des caractĂ©ristiques sĂ©dimentaires diffĂ©rentes. Pour la dĂ©tection des traces biologiques (ADN extracellulaire et kystes) d’A. minutum dans les sĂ©diments de surface de la Rade de Brest, 30 stations ont Ă©tĂ© Ă©chantillonnĂ©es Ă  pied dans la zone intertidale ou en plongĂ©e. Ces stations ont Ă©tĂ© sĂ©lectionnĂ©es pour : i) leur gĂ©omorphologie cĂŽtiĂšre qui peut favoriser l’accumulation des kystes (baie, estuaires) ii) leurs typologies sĂ©dimentaires (de vaseuse Ă  sableuse) qui peuvent garantir une meilleure conservation et accumulation des kystes de dinoflagellĂ©s iii) une faible bioturbation (l’absence d’organisme benthique) iv) leur situation stratĂ©gique d’un point de vue Ă©conomique (ports, zones touristiques, zones conchylicoles) et Ă©cologiques (zones d’efflorescence d’A. minutum). La dĂ©tection de traces biologiques est faite par mĂ©thode gĂ©nĂ©tique (PCR spĂ©cifique), une technique plus rapide que les mĂ©thodes classiques en microscopie optique basĂ©es sur l’identification morphologique des kystes. En parallĂšle une caractĂ©risation de la typologie sĂ©dimentaire (granulomĂ©trie) des stations analysĂ©es est faite dans cette Ă©tude pour chercher une possible corrĂ©lation entre typologie sĂ©dimentaire et prĂ©sence ou abondance d’A. minutum. Les analyses gĂ©nĂ©tiques mettent en Ă©vidence la prĂ©sence de la microalgue potentiellement toxique A. minutum (kystes ou ADN libre extracellulaire) dans toutes les stations. Les analyses gĂ©nĂ©tiques ne permettent pas de discriminer les cellules vivantes (kystes) du matĂ©riel biologique inerte (ADN extracellulaire). Toutefois, elles permettent d’affirmer que les sĂ©diments de toutes les stations Ă©chantillonnĂ©es sont caractĂ©risĂ©s soit par la prĂ©sence de kystes ou ont Ă©tĂ© en contact avec la microalgue toxique A. minutum. L’étude granulomĂ©trique des sĂ©diments superficiels a mis en Ă©vidence la prĂ©dominance des sĂ©diments les plus fins, de type vase ou vaso-sableux dans la partie orientale de la Rade. Une relation a Ă©tĂ© identifiĂ©e entre typologie des sĂ©diments et quantitĂ© d’ADN totale extrait de sĂ©diments, pour les stations des zones estuariennes. Les stations avec un pourcentage plus Ă©levĂ© de sĂ©diments fins (< 0,63ÎŒm) et donc une typologie sĂ©dimentaire sablo-vaseuse sont caractĂ©risĂ©s par des concentrations d’ADN total (tous les organismes) plus Ă©levĂ©es. Il n’est pas possible Ă  partir de ces premiĂšres analyses d’affirmer qu’il existe une relation entre la typologie sĂ©dimentaire et la quantitĂ© d’ADN d’A. minutum. Cette relation sera analysĂ©e une fois que les analyses quantitatives de l’ADN d’A.minutum par PCR en temps rĂ©el seront conduites. Ces analyses, couplĂ©es avec des expĂ©riences de germination d’A. minutum Ă  partir des sĂ©diments, feront l’objet du rapport final du projet Daoulex qui sera prĂ©sentĂ© en DĂ©cembre 2014

    Impact of Oyster Farming on Diagenetic Processes and the Phosphorus Cycle in Two Estuaries (Britanny, France)

    No full text
    This study aims to compare the impact of oyster cultures on diagenetic processes and the phosphorus cycle in the sediments of the Aber BenoĂźt and the RiviĂšre d’Auray, estuary of Brittany, France. Our results showed clear evidence of the seasonal impact of oyster cultures on sediment characteristics (grain size, organic matter parameters), and the phosphorus cycle, especially in the Aber BenoĂźt. At this site, seasonal variations of sulfide and Fe concentrations in pore waters, as well as Fe-P concentrations in the solid-phase highlighted a shift from a system governed by iron reduction (Reference) to a system governed by sulphate reduction (Beneath Oyster). This could be partly explained by the increase in labile organic matter (ie, biodeposits) beneath oysters, whose mineralization by sulfate led to high sulfide concentrations in pore waters (up to 4475 ”mol l-1). In turn, sulfide caused an enhanced release of phosphate in the summer, as adsorption sites for phosphate decreased through the formation of iron sulfide compounds (FeS, FeS2). In the Aber BenoĂźt, dissolved Fe/PO4 ratios could be used as an indicator of phosphate release into oxic water. Low Fe/PO4 ratios in the summer indicated higher effluxes of phosphate towards the water column (up to 47 ”mol m-2 h-1). At other periods, Fe/PO4 ratios higher than 2 mol:mol indicated very low phosphate fluxes. In contrast, in the RiviĂšre d’Auray, the occurrence of macroalgae stranding regularly all over the site, clearly masked the impact of oyster cultures on sediment properties and the phosphorus cycle and made the use of Fe/PO4 ratios more difficult in terms of indicators of phosphate release

    Diagenetic Processes in Aquaculture Ponds Showing Metal Accumulation on Shrimp Gills

    No full text
    The gill is the organ by which many toxic metals are taken up by crustaceans. Iron is known to precipitate at its surface, a phenomenon recently observed in some tropical aquaculture ponds. The present study uses a field approach to understand better the environmental conditions and ecological processes involved in this deposit. Because shrimp are exposed to reduced products originating from organic waste accumulated in the sediment, spatial variation in pH, redox potential and concentrations of dissolved metals in pore water were investigated in these ponds. Total organic carbon, acid volatile sulfide and pyrite were also analyzed in the solid phase. Fe2+ in pore waters showed high spatial variability between ponds and within the same pond with concentrations up to 1,193 ÎŒmol l–1. Behaviors of Fe2+, Mn2+ and Co2+ in pore water were similar. Four geochemical environments were identified, based on their physico-chemical characteristics. Highest concentrations for Fe2+, Mn2+ and Co2+ in sediment pore water occurred in slightly acidic and suboxic conditions. When the sediment became anoxic, the H2S produced reacted with Fe2+ and/or Co2+ to form acid volatile sulfide and pyrite. When pH increased, the concentration of free H2S rose up to 736 ÎŒmol l–1. With neutral and suboxic conditions, dissolved metal concentrations could be controlled by their precipitation as oxides and hydroxides. The production of pyrite suggested the existence of a possible process of sediment acidification between two crop periods through the production of sulfuric acid. This acidification could increase with pond age and be the cause of the accumulation of reduced metal after 30 years of aquaculture activity

    Quel est l’impact de l’origine de la matiĂšre organique sĂ©dimentaire sur les flux benthiques de nutriments dans les vasiĂšres cĂŽtiĂšres bretonnes ?

    No full text
    International audienceLes vasiĂšres du littoral breton ont Ă©tĂ© suggĂ©rĂ©es comme une source potentielle de nutriments dissous pouvant alimenter les efflorescences d’algues vertes responsables de dommages sanitaires et Ă©conomiques. Les sĂ©diments de vasiĂšre sont des rĂ©acteurs dans lesquels la matiĂšre organique sĂ©dimentaire (MOS) est consommĂ©e par les microorganismes produisant des flux benthiques diffusifs d’azote sous forme d’ammoniaque NH4+ et de phosphore sous forme de phosphate PO43-. L’origine de la MOS a souvent Ă©tĂ© mentionnĂ©e comme un facteur contrĂŽlant sa rĂ©activitĂ©. Dans les vasiĂšres intertidales, la MOS est un mĂ©lange d’apports marins et terrestres, ces derniers pouvant provenir d’apports naturels ou anthropiques. Pour quantifier le lien entre l’origine de la MOS et la capacitĂ© d’un sĂ©diment Ă  produire des flux benthiques, 200 Ă©chantillons de vasiĂšres intertidales ont Ă©tĂ© prĂ©levĂ©s le long de la cĂŽte bretonne depuis l’estuaire de la Rance au Nord-Est jusqu’au Golfe du Morbihan au Sud-Est. Ces Ă©chantillons ont Ă©tĂ© incubĂ©s sur place pour dĂ©terminer leur capacitĂ© Ă  produire les flux benthiques de nutriments et ont Ă©tĂ© analysĂ©s pour dĂ©terminer leur composition physique (granulomĂ©trie, porositĂ©), Ă©lĂ©mentaire (C, N et P), isotopique (d13C et d15N) et molĂ©culaire (distribution des lipides). L’analyse statistique entre la composition isotopique et lipidique de la MOS et les flux de nutriments permet d’attribuer 24% et 31% de la variance des flux de NH4+ et de PO43- Ă  l’origine de la MOS, respectivement. Les flux de NH4+ sont contrĂŽlĂ©s par l’absorption par le phytoplancton de l’azote anthropique dissous exportĂ© par les bassins versants agricoles. Leur sĂ©dimentation est favorisĂ©e par de faibles conditions hydrodynamiques, enrichissant les sĂ©diments en MO labile. Les flux de PO43- sont dus Ă  la sĂ©dimentation de particules de P exportĂ©es par l’érosion des sols agricoles

    Quel est l’impact de l’origine de la matiĂšre organique sĂ©dimentaire sur les flux benthiques de nutriments dans les vasiĂšres cĂŽtiĂšres bretonnes ?

    No full text
    International audienceLes vasiĂšres du littoral breton ont Ă©tĂ© suggĂ©rĂ©es comme une source potentielle de nutriments dissous pouvant alimenter les efflorescences d’algues vertes responsables de dommages sanitaires et Ă©conomiques. Les sĂ©diments de vasiĂšre sont des rĂ©acteurs dans lesquels la matiĂšre organique sĂ©dimentaire (MOS) est consommĂ©e par les microorganismes produisant des flux benthiques diffusifs d’azote sous forme d’ammoniaque NH4+ et de phosphore sous forme de phosphate PO43-. L’origine de la MOS a souvent Ă©tĂ© mentionnĂ©e comme un facteur contrĂŽlant sa rĂ©activitĂ©. Dans les vasiĂšres intertidales, la MOS est un mĂ©lange d’apports marins et terrestres, ces derniers pouvant provenir d’apports naturels ou anthropiques. Pour quantifier le lien entre l’origine de la MOS et la capacitĂ© d’un sĂ©diment Ă  produire des flux benthiques, 200 Ă©chantillons de vasiĂšres intertidales ont Ă©tĂ© prĂ©levĂ©s le long de la cĂŽte bretonne depuis l’estuaire de la Rance au Nord-Est jusqu’au Golfe du Morbihan au Sud-Est. Ces Ă©chantillons ont Ă©tĂ© incubĂ©s sur place pour dĂ©terminer leur capacitĂ© Ă  produire les flux benthiques de nutriments et ont Ă©tĂ© analysĂ©s pour dĂ©terminer leur composition physique (granulomĂ©trie, porositĂ©), Ă©lĂ©mentaire (C, N et P), isotopique (d13C et d15N) et molĂ©culaire (distribution des lipides). L’analyse statistique entre la composition isotopique et lipidique de la MOS et les flux de nutriments permet d’attribuer 24% et 31% de la variance des flux de NH4+ et de PO43- Ă  l’origine de la MOS, respectivement. Les flux de NH4+ sont contrĂŽlĂ©s par l’absorption par le phytoplancton de l’azote anthropique dissous exportĂ© par les bassins versants agricoles. Leur sĂ©dimentation est favorisĂ©e par de faibles conditions hydrodynamiques, enrichissant les sĂ©diments en MO labile. Les flux de PO43- sont dus Ă  la sĂ©dimentation de particules de P exportĂ©es par l’érosion des sols agricoles

    Heterogeneous distribution in sediments and dispersal in waters of Alexandrium minutum in a semi-enclosed coastal ecosystem

    No full text
    Within the framework of research aimed at using genetic methods to evaluate harmful species distribution and their impact on coastal ecosystems, a portion of the ITS1rDNA of Alexandrium minutum was amplified by real-time PCR from DNA extracts of superficial (1–3 cm) sediments of 30 subtidal and intertidal stations of the Bay of Brest (Brittany, France), during the winters of 2013 and 2015. Cell germinations and rDNA amplifications of A. minutum were obtained for sediments of all sampled stations, demonstrating that the whole bay is currently contaminated by this toxic species. Coherent estimations of ITS1rDNA copy numbers were obtained for the two sampling cruises, supporting the hypothesis of regular accumulation of A. minutum resting stages in the south-eastern, more confined embayments of the study area, where fine-muddy sediments are also more abundant. Higher ITS1rDNA copy numbers were detected in sediments of areas where blooms have been seasonally detected since 2012. This result suggests that specific genetic material estimations in superficial sediments of the bay may be a proxy of the cyst banks of A. minutum. The simulation of particle trajectory analyses by a Lagrangian physical model showed that blooms occurring in the south-eastern part of the bay are disconnected from those of the north-eastern zone. The heterogeneous distribution of A. minutum inferred from both water and sediment suggests the existence of potential barriers for the dispersal of this species in the Bay of Brest and encourages finer analyses at the population level for this species within semi-enclosed coastal ecosystems

    How the origin of sedimentary organic matter impacts the benthic nutrient fluxes in shallow coastal mudflats

    No full text
    The origin of sedimentary organic matter (SOM) has often been mentioned as a driver of SOM reactivity. This was quantified by statistically relating the isotopic and lipid composition of SOM to benthic nutrient fluxes in 200 intertidal mudflats sampled along the Brittany coast (France). The origin of SOM explained 24% and 31% of the variance of and fluxes, respectively. The fluxes were driven by the uptake by phytoplankton of dissolved anthropogenic N exported from agricultural catchments. Their sedimentation is favoured by low hydrodynamic conditions, enriching the sediments with labile OM. The fluxes were driven by the sedimentation of particulate P exported through agricultural soil erosion.L’origine de la matiĂšre organique sĂ©dimentaire (MOS) a souvent Ă©tĂ© mentionnĂ©e comme un facteur contrĂŽlant sa rĂ©activitĂ©. Ce lien a Ă©tĂ© quantifiĂ© via une relation statistique entre la composition isotopique et lipidique de la MOS et les flux de nutriments benthiques dans 200 vasiĂšres intertidales Ă©chantillonnĂ©es le long de la cĂŽte bretonne (France). L’origine de la MOSexplique 24% et 31% de la variance des flux de et de , respectivement. Les flux de sont contrĂŽlĂ©s par l’absorption par le phytoplancton de l’azote anthropique dissous exportĂ© par les bassins versants agricoles. Leur sĂ©dimentation est favorisĂ©e par de faibles conditions hydrodynamiques, enrichissant les sĂ©diments en MO labile. Les flux de sont dus Ă  la sĂ©dimentation de particules de P exportĂ©es par l’érosion des sols agricoles

    Withdrawn. Linking sediment biodegradability with its origin in shallow coastal environments

    No full text
    In coastal areas and estuaries, such as those encountered in the western part of France (Brittany region), the recycling of carbon and nutrients from sediments can participate in the development of micro and macro-algal blooms with harmful consequences for these ecosystems. One of the main processes controlling this recycling is the microbial mineralization of sedimentary organic matter (SOM). Mineralization is controlled by the origin, quantity and accessibility of the SOM, three factors whose relative importance remain, however, poorly quantified, mainly due to the great diversity of OM sources in coastal areas. The first objective of the present work was to assess the variability of the SOM origin at the regional scale representative of the complexity of the sources likely to be involved. The second objective was to determine the link between the SOM origin and its biodegradability, and how the OM sources can drive nutrient dynamics at the sediment-water interface. To this end, a broad sediment sampling campaign was carried out on Brittany mudflats, particularly affected by the eutrophication, during the spring period. A total of 200 samples were collected at 45 sites. They were characterized by their porosity and grain-size, as well as their chemical composition through elemental, isotopic and molecular biomarker analysis. A wide range of OM sources were identified in the sediments, including both natural (bacteria, algae, macrophytes, terrestrial plants), and anthropogenic (combustion products, crude oil, petroleum products – e.g. from the processing of crude oil at refineries- and fecal matter) sources. Sediment slurry incubations were carried out to determine the spatial variability of potential mineralization rates under oxic conditions. In addition, the measurements of NH4+ and PO4 fluxes at the sediment-water interface were made from sediment core incubations under realistic redox conditions of sediment. The physical and chemical sedimentary characteristics explained 58 % of the variability of mineralization rates under oxic conditions, with a negligible independent effect of the SOM origin (3 %). Conversely, under insitu redox conditions, the prevalent role of SOM origin over quantity/accessibility on the sediment biodegradability was highlighted with a significant effect 5 and 1.5 fold higher on the PO4 and NH4+ fluxes respectively. The anthropogenic inputs from the watershed to the coastal sediment, through agricultural runoff and/or sewages discharge, seem to significantly drive the nutrient dynamics at the sediment-water interface. Higher values of NH4+ and PO4 fluxes were measured for the sediment with a chemical composition impacted by human activities
    corecore