10,774 research outputs found
Synchronization in fiber lasers arrays
We consider an array of fiber lasers coupled through the nearest neighbors.
The model is a generalized nonlinear Schroedinger equation where the usual
Laplacian is replaced by the graph Laplacian. For a graph with no symmetries,
we show that there is no resonant transfer of energy between the different
eigenmodes. We illustrate this and confirm our result on a simple graph. This
shows that arrays of fiber ring lasers can be made temporally coherent
Awareness towards Chikungunya virus infection risk by general practitioners in Rome: a questionnaire based survey before the 2017 outbreak
Autochthonous cases of Chikungunya (CHIKV) have been recently detected in Rome. A survey was conduct- ed prior to the 2017 outbreak to assess knowledge, attitude, and practices towards CHIKV infections on 103 randomly selected general practitioners (GPs), practicing in the centre of Rome. Only 24.3% were aware of CHIKV and completed the interview. Among completers, the knowledge of basic elements of CHIKV in- fection was insufficient. Only two thirds of them were able to identify possible CHIKV cases in hypothetical clinical scenarios presented by the interviewer. Our study highlights the need to improve GP knowledge to- wards CHIKV, as a necessary step to establish an efficacious epidemic surveillance
Epidemic model on a network: analysis and applications to COVID-19
We analyze an epidemic model on a network consisting of
susceptible-infected-recovered equations at the nodes coupled by diffusion
using a graph Laplacian. We introduce an epidemic criterion and examine
different vaccination/containment strategies: we prove that it is most
effective to vaccinate a node of highest degree. The model is also useful to
evaluate deconfinement scenarios and prevent a so-called second wave. The model
has few parameters enabling fitting to the data and the essential ingredient of
importation of infected; these features are particularly important for the
current COVID-19 epidemic
Stability analysis of static solutions in a Josephson junction
We present all the possible solutions of a Josephson junction with bias
current and magnetic field with both inline and overlap geometry, and examine
their stability. We follow the bifurcation of new solutions as we increase the
junction length. The analytical results, in terms of elliptic functions in the
case of inline geometry, are in agreement with the numerical calculations and
explain the strong hysteretic phenomena typically seen in the calculation of
the maximum tunneling current. This suggests a different experimental approach
based on the use, instead of the external magnetic field the modulus of the
elliptic function or the related quantity the total magnetic flux to avoid
hysteretic behavior and unfold the overlapping curves.Comment: 36 pages with 17 figure
Eigenvectors of graph Laplacians: a landscape
We review the properties of eigenvectors for the graph Laplacian matrix,
aiming at predicting a specific eigenvalue/vector from the geometry of the
graph. After considering classical graphs for which the spectrum is known, we
focus on eigenvectors that have zero components and extend the pioneering
results of Merris (1998) on graph transformations that preserve a given
eigenvalue or shift it in a simple way. These transformations enable
us to obtain eigenvalues/vectors combinatorially instead of numerically; in
particular we show that graphs having eigenvalues up to
six vertices can be obtained from a short list of graphs. For the converse
problem of a subgraph of a graph , we prove results
and conjecture that and are connected by two of the simple
transformations described above
RR LYRAE VARIABLE STARS: PULSATIONAL CONSTRAINTS RELEVANT TO THE OOSTERHOFF CONTROVERSY
A solution to the old Oosterhoff controversy is proposed on the basis of a
new theoretical pulsational scenario concerning RR Lyrae cluster variables
(Bono and coworkers). We show that the observed constancy of the lowest
pulsation period in both Oosterhoff type I (OoI) and Oosterhoff type II (OoII)
prototypes (M3, M15) can be easily reproduced only by assuming the canonical
evolutionary horizontal-branch luminosity levels of these Galactic globular
clusters and therefore by rejecting the Sandage period shift effect (SPSE).Comment: postscript file of 7 pages and 2 figures; one non postcript figure is
available upon request; for any problem please write to
[email protected]
- …