7 research outputs found

    A New Frontier of Photocatalysis Employing Micro-Sized TiO2: Air/Water Pollution Abatement and Self-Cleaning/ Antibacterial Applications

    Get PDF
    This chapter presents the use of a commercial micro-sized TiO2 powder as an alternative to the traditional nano-powders as semiconductors in photocatalytic processes. Results of the photocatalytic efficiency towards the photodegradation of the traditional pollutant molecules both in gas phase (nitrogen oxides (NOx) and volatile organic compounds (VOCs)) and in water phase (phenol) are presented and compared to the results obtained with two nano-sized reference powders. Micro-sized TiO2 is also industrially coated at the surfaces of porcelain grés tiles (Active Clean Air and Antibacterial Ceramic™). The possibility to have a photocatalytic material, strongly stuck at the surface of a vitrified tile, increases the use of photocatalysis in real conditions: no problem of filtration of the semiconductor from the liquid medium after use and no risks of leakage of nanoparticles in the atmosphere. Tests were performed using reactors equipped with UV-A lamps and with suitable analytical systems, depending on the final purpose. Characterization data from both powders and coated tiles are put in correlation with the photocatalytic results to understand the semiconductor action during the photocatalytic process. Polluting molecules were chosen in order to cover all the common aspects of environmental pollution: NOx and some VOCs represent the model molecules to test the efficiency of the micro-sized TiO2 (degradation from the pristine molecule to CO2 or inorganic salts) in gas phase. As for the water pollution, phenol was chosen as common pollutant in worldwide rivers. Moreover, tests on self-cleaning and antibacterial properties are also reported. The positive results of micro-sized TiO2 both in powder and coated onto the surface of porcelain grés tiles open the way to new photocatalytic products that do not make use of nanoscale powders avoiding problems to human safety caused by the inherent toxicity of the nanoparticles

    Photocatalytic TiO2: From Airless Jet Spray Technology to Digital Inkjet Printing

    Get PDF
    TiO2 powders can be employed as both photocatalytic and structural materials, leading to applications in external coatings or in interior furnishing devices, including cement mortar, tiles, floorings, and glass supports. The technology of photocatalytic building materials is connected with the widespread production of photocatalytic active tiles. All the techniques proposed in the study involve the employment of nanosized TiO2: this represents a new problem to be dealt with, as inhaling nanoparticles exposes workers during industrial production and people in everyday locations to their dangerousness. Only very recently the employment of microsized TiO2 has been proposed, and the authors in this manuscript report the use of micrometric titania materials, but employing a new deposition technique, which is digital inkjet printing. It represents an improvement of the classical spray coating methods, as it requires piezoelectric heads to precisely direct the deposition of the suspension with an electrostatic field. The mixture contains aqueous/organic components containing micrometric TiO2: to form a suspension, which is printed onto the surface of porcelain grès, large slabs using a digital printer. Many advantages are immediately evident, namely rapid and precise deposition, (almost) no waste of raw materials, thereby highlighting the economy, environmental friendliness, and sustainability of the process. All the materials we obtained have been thoroughly characterized by means of several experimental physico-chemical techniques, such as Raman microspectroscopy and scanning electron microscopy coupled with elemental analysis. Two different model VOCs, ethanol and toluene, and NOx have been selected to test the photocatalytic performances of the abovementioned tiles. Moreover, the antibacterial properties of the tiles have been determined, using Escherichia coli as example. Life cycle assessments (LCAs) for the two processes were modeled for 1 m2 of tiles produced in Modena, Italy. The impact assessments revealed that jet spraying exhibited uniformly greater impacts than digital inkjet printing and that the principal impacts were in human toxicity, cancer effects, freshwater ecotoxicity, and climate change. Most of the impacts were associated with the energy required for the production processes. Further considerations revealed that jet spraying is projected to generate twice as much CO2 and 30% more NOx than digital inkjet printing

    The Role of the Nano/Microstructure in the Case of the Photodegradation of Two Model VOC Pollutants Using Commercial TiO<sub>2</sub>

    No full text
    The comparison of the photocatalytic efficiency of different commercial TiO2 samples towards the degradation of two model VOC gases, acetone and isopropanol, as a function of the nano/micro-size of the semiconductor is here reported. In particular, we chose to work with all TiO2 commercial powdered samples both as photocatalytic material and simple pigments, to verify the importance of both particles dimension and surface \u2013OH terminations on the photocatalytic efficiency and the possibility to use materials cheaper but mainly free from any drawbacks on human health coming from the nano-structure
    corecore