72 research outputs found

    Optimized conversion of wheat straw into single cell oils by Yarrowia lipolytica and Lipomyces tetrasporus and synthesis of advanced biofuels

    Get PDF
    This paper deals with the optimized conversion of undetoxified wheat straw hydrolysates into microbial lipids by two oleaginous yeasts, Yarrowia lipolytica and Lipomyces tetrasporus. Wheat straw were pretreated by steam explosion at 203 degrees C for 300 s and hydrolysed at 20% solid-to-liquid ratio by using an enzymatic loading of 15 FPU/ g substrate. The mixed wheat straw hydrolysates (WHS) contained 86 gL-1 glucose and 22 gL-1 xylose, 2.3 gL-1 acetic acid, 0.9 gL-1 furanic compounds. The fermentation process was optimized in terms of the inoculum age and density, medium composition, and bioreactor feeding strategy. In particular, the different capacity of the two yeasts to overcome the toxic effect of the biomass degradation by-products, in different inoculum ages, was deeply investigated. Two hydrolysates concentration were tested: WSH containing 86 gL-1 glucose and 22 gL-1 xylose and the diluted medium containing 40 gL-1 glucose and 22 gL-1 xylose. The results indicated that both yeasts were able to detoxify WSH and grow on undetoxified hydrolysates as effect of the intrinsic capacity to metabolize the furan derivatives. Y. lipolytica was able to detoxify the medium in all the investigated set-ups, while L. tetrasporus was able to detoxify the medium only if inoculated in the stationary phase of growth. After the process optimization in shaken flasks, the production of Single Cell Oils (SCOs) by L. tetrasporus was carried out in a medium-scale bioreactor of 10L obtaining lipid yield and cell content of 21% and 62%, respectively. The extracted SCOs, with high oleic and palmitic acid content, were converted into biodiesel displaying overall features in accordance with international biodiesel standards, namely ASTM and EN 14214

    Vibrotactile Feedback for Brain-Computer Interface Operation

    Get PDF
    To be correctly mastered, brain-computer interfaces (BCIs) need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (including 3 with spinal cord injury), we compared vibrotactile and visual feedback, addressing: (I) the feasibility of subjects' training to master their EEG rhythms using tactile feedback; (II) the compatibility of this form of feedback in presence of a visual distracter; (III) the performance in presence of a complex visual task on the same (visual) or different (tactile) sensory channel. The stimulation protocol we developed supports a general usage of the tactors; preliminary experimentations. All studies indicated that the vibrotactile channel can function as a valuable feedback modality with reliability comparable to the classical visual feedback. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task. In all experiments, vibrotactile feedback felt, after some training, more natural for both controls and SCI users

    Brain-Machine Interfaces through Control of Electroencephalographic Signals and Vibrotactile Feedback

    Get PDF
    A Brain-Computer Interface (BCI) allow direct expression of its user�s will by interpreting signals which directly reflect the brain�s activity, thus bypassing the natural efferent channels (nerves and muscles). To be correctly mastered, it is needed that this artificial efferent channel is complemented by an artificial feedback, which continuously informs the user about the current state (in the same way as proprioceptors give a feedback about joint angle and muscular tension). This feedback is usually delivered through the visual channel. We explored the benefits of vibrotactile feedback during users� training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified and implemented. Thirteen subjects participated in an experiment where the feedback of the BCI system was delivered either through a visual display, or through a vibrotactile display, while they performed a virtual navigation task. Attention to the task was probed by presenting visual cues that the subjects had to describe afterwards. When compared with visual feedback, the use of tactile feedback did not decrease BCI control performance; on the other side, it improved the capacity of subjects to concentrate on the requested (visual) task. During experiments, vibrotactile feedback felt (after some training) more natural. This study indicated that the vibrotactile channel can function as a valuable feedback modality in the context of BCI applications. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task

    Urological melanoma: A comprehensive review of a rare subclass of mucosal melanoma with emphasis on differential diagnosis and therapeutic approaches

    Get PDF
    Melanoma is reported as the 19th most common cancer worldwide, with estimated age-standardized incidence rates of 2.8–3.1 per 100,000. Although the origin is most frequently cutaneous, mucosal melanoma has been described several times in literature, and despite its rarity (only 1% of all melanomas), increasing attention is being paid to this disease form. Within this subgroup, melanomas of the uropoetic apparatus are a rarity among rarities. Indeed, less than 50 cases of primary melanoma originating from the urinary bladder have been described, and even less originating from the kidney, renal pelvis and urethra. In this work, we present a detailed review of the literature related to this proaches. subclass of mucosal melanoma, delve into the biological landscape of this neoplasm and discuss current approaches, future perspectives and potential therapeutic approaches. Keywords: melanoma; mucosal melanoma; urology

    Formalin-fixed and paraffin-embedded samples for next generation sequencing: Problems and solutions

    Get PDF
    Over the years, increasing information has been asked of the pathologist: we have moved from a purely morphological diagnosis to biomolecular and genetic studies, which have made it possible to implement the use of molecular targeted therapies, such as anti-epidermal growth factor receptor (EGFR) molecules in EGFR-mutated lung cancer, for example. Today, next generation sequencing (NGS) has changed the approach to neoplasms, to the extent that, in a short time, it has gained a place of absolute importance and diagnostic, prognostic and therapeutic utility. In this scenario, formaldehyde-fixed and paraffin-embedded (FFPE) biological tissue samples are a source of clinical and molecular information. However, problems can arise in the genetic material (DNA and RNA) for use in NGS due to fixation, and work is being devoted to possible strategies to reduce its effects. In this paper, we discuss the applications of FFPE tissue samples in the execution of NGS, we focus on the problems arising with the use of this type of material for nucleic acid extraction and, finally, we consider the most useful strategies to prevent and reduce single nucleotide polymorphisms (SNV) and other fixation artifacts

    Vibrotactile Feedback in the Context of Mu-Rhythm based BCI

    Get PDF
    Brain-Computer Interfaces (BCIs) need an uninterrupted flow of feedback to the user, which is usually delivered through the visual channel. Our aim is to explore the benefits of vibrotactile feedback during users� training and control of EEG-based BCI applications. An experimental setup for delivery of vibrotactile feedback, including specific hardware and software arrangements, was specified. We compared vibrotactile and visual feedback, addressing the performance in presence of a complex visual task on the same (visual) or different (tactile) sensory channel. The preliminary experimental setup included a simulated BCI control. in which all parts reflected the computational and actuation process of an actual BCI, except the souce, which was simulated using a �noisy� PC mouse. Results indicated that the vibrotactile channel can function as a valuable feedback modality with reliability comparable to the classical visual feedback. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task

    The mislocation of the initial position of a moving stimulus

    No full text
    Ricerca sperimentale sull'effetto Fr\uf6lic
    corecore