3,264 research outputs found
Analysis of Dialogical Argumentation via Finite State Machines
Dialogical argumentation is an important cognitive activity by which agents
exchange arguments and counterarguments as part of some process such as
discussion, debate, persuasion and negotiation. Whilst numerous formal systems
have been proposed, there is a lack of frameworks for implementing and
evaluating these proposals. First-order executable logic has been proposed as a
general framework for specifying and analysing dialogical argumentation. In
this paper, we investigate how we can implement systems for dialogical
argumentation using propositional executable logic. Our approach is to present
and evaluate an algorithm that generates a finite state machine that reflects a
propositional executable logic specification for a dialogical argumentation
together with an initial state. We also consider how the finite state machines
can be analysed, with the minimax strategy being used as an illustration of the
kinds of empirical analysis that can be undertaken.Comment: 10 page
Implementing a Theory of a Legal Domain
We describe a system for constructing, evaluating and visualising arguments based on a theory of a legal domain, developed using the Angelic methodology and the Carneades argumentation system. The visualisation can be used to explain particular cases and to refine and maintain the theory. A full implementation of the well known US Trade Secrets Domain is used to illustrate the process.</jats:p
Metric for Security Activities assisted by Argumentative Logic
International audienceRecent security concerns related to future embedded systems make enforcement of security requirements one of the most critical phases when designing such systems. This paper introduces an approach for efficient enforcement of security requirements based on argumentative logic, especially reasoning about activation or deactivation of different security mechanisms under certain functional and non-functional requirements. In this paper, the argumentative logic is used to reason about the rationale behind dynamic enforcement of security policies
Mutational analysis of Peroxiredoxin IV: exclusion of a positional candidate for multinodular goitre
BACKGROUND: Multinodular goitre (MNG) is a common disorder characterised by an enlargement of the thyroid, occurring as a compensatory response to hormonogenesis impairment. The incidence of MNG is dependent on sex (female:male ratio 5:1) and several reports have documented a genetic basis for the disease. Last year we mapped a MNG locus to chromosome Xp22 in a region containing the peroxiredoxin IV (Prx-IV) gene. Since Prx-IV is involved in the removal of H(2)O(2) in thyroid cells, we hypothesize that mutations in Prx-IV gene are involved in pathogenesis of MNG. METHODS: Four individuals (2 affected, 2 unrelated unaffected) were sequenced using automated methods. All individuals were originated from the original three-generation Italian family described in previous studies. A Southern blot analysis using a Prx-IV full-length cDNA as a probe was performed in order to exclude genomic rearrangements and/or intronic mutations. In addition a RT-PCR of PRX-IV was performed in order to investigate expression alterations. RESULTS: No causative mutations were found. Two adjacent nucleotide substitutions were detected within introns 1 and 4. These changes were also detected in unaffected individuals, suggesting that they were innocuous polymorphisms. No gross genomic rearrangements and/or restriction fragment alterations were observed on Southern analysis. Finally, using RT-PCR from tissue-specific RNA, no differences of PRX-IV expression-levels were detected between affected and unaffected samples. CONCLUSIONS: Based on sequence and genomic analysis, Prx-IV is very unlikely to be the MNG2 gene
Senses of ‘argument’ in instantiated argumentation frameworks
Abstract Argumentation Frameworks (AFs) provide a fruitful basis for exploring issues of defeasible reasoning. Their power largely derives from the abstract nature of the arguments within the framework, where arguments are atomic nodes in an undifferentiated relation of attack. This abstraction conceals different senses of argument, namely a single-step reason to a claim, a series of reasoning steps to a single claim, and reasoning steps for and against a claim. Concrete instantiations encounter difficulties and complexities as a result of conflating these senses. To distinguish them, we provide an approach to instantiating AFs in which the nodes are restricted to literals and rules, encoding the underlying theory directly. Arguments in these senses emerge from this framework as distinctive structures of nodes and paths. As a consequence of the approach, we reduce the effort of computing argumentation extensions, which is in contrast to other approaches. Our framework retains the theoretical and computational benefits of an abstract AF, distinguishes senses of argument, and efficiently computes extensions. Given the mixed intended audience of the paper, the style of presentation is semi-formal
Precision Measurement of KS Meson Lifetime with the KLOE detector
Using a large sample of pure, slow, short lived K0 mesons collected with KLOE
detector at DaFne, we have measured the KS lifetime. From a fit to the proper
time distribution we find tau = (89.562 +- 0.029_stat +- 0.043_syst) ps. This
is the most precise measurement today in good agreement with the world average
derived from previous measurements. We observe no dependence of the lifetime on
the direction of the Ks.Comment: 5 pages, 7 figure
Gravitational wave astronomy
The first decade of the new millenium should see the first direct detections
of gravitational waves. This will be a milestone for fundamental physics and it
will open the new observational science of gravitational wave astronomy. But
gravitational waves already play an important role in the modeling of
astrophysical systems. I review here the present state of gravitational
radiation theory in relativity and astrophysics, and I then look at the
development of detector sensitivity over the next decade, both on the ground
(such as LIGO) and in space (LISA). I review the sources of gravitational waves
that are likely to play an important role in observations by first- and
second-generation interferometers, including the astrophysical information that
will come from these observations. The review covers some 10 decades of
gravitational wave frequency, from the high-frequency normal modes of neutron
stars down to the lowest frequencies observable from space. The discussion of
sources includes recent developments regarding binary black holes, spinning
neutron stars, and the stochastic background.Comment: 29 pages, 2 figures, as submitted for special millenium issue of
Classical and Quantum Gravit
A Study of the Radiative Ke3 Decay and Search for Direct Photon Emission with the KLOE Detector
We present a measurement of the ratio R =
\Gamma(\keg;\Estar>30\mev,\qstar>20^\circ)\Gamma(\kegf) of data corresponding to about 3.5
million Ke3(g) events and about 9000 radiative events. Our result is R=(924 +/-
23(stat) +/-16(syst)10^{-5} for the branching ratio and X=-2.3 +/- 1.3(stat)
+/- 1.4(syst) for the parameter describing direct emission.Comment: 8 pages, 7 figure
Study of the a_0(980) meson via the radiative decay phi->eta pi^0 gamma with the KLOE detector
We have studied the phi->a_0(980) gamma process with the KLOE detector at the
Frascati phi-factory DAPhNE by detecting the phi->eta pi^0 gamma decays in the
final states with eta->gamma gamma and eta->pi^+ pi^- pi^0. We have measured
the branching ratios for both final states: Br(phi->eta pi^0 gamma)=(7.01 +/-
0.10 +/- 0.20)x10^-5 and (7.12 +/- 0.13 +/- 0.22)x10^-5 respectively. We have
also extracted the a_0(980) mass and its couplings to eta pi^0, K^+ K^-, and to
the phi meson from the fit of the eta pi^0 invariant mass distributions using
different phenomenological models.Comment: 17 pages, 6 figures, submitted to Physics Letters B. Corrected typos
in eq.
- …