419 research outputs found

    Fragment screening reveals salicylic hydroxamic acid as an inhibitor of <em>Trypanosoma brucei</em> GPI GlcNAc-PI de-N-acetylase

    Get PDF
    The zinc-metalloenzyme GlcNAc-PI de-N-acetylase is essential for the biosynthesis of mature GPI anchors and has been genetically validated in the bloodstream form of Trypanosoma brucei, which causes African sleeping sickness. We screened a focused library of zinc-binding fragments and identified salicylic hydroxamic acid as a GlcNAc-PI de-N-acetylase inhibitor with high ligand efficiency. This is the first small molecule inhibitor reported for the trypanosome GPI pathway. Investigating the structure activity relationship revealed that hydroxamic acid and 2-OH are essential for potency, and that substitution is tolerated at the 4- and 5-positions

    Complex Effects of Cytochrome P450 Monooxygenase on Purple Membrane and Bacterioruberin Production in an Extremely Halophilic Archaeon: Genetic, Phenotypic, and Transcriptomic Analyses

    Get PDF
    Halophilic archaea are known to produce a diverse array of pigments for phototrophy and photoprotection. The aim of this paper was to determine the role of a Halobacterium gene encoding the predicted cytochrome P450 monooxygenase (CYP174A1) in pigment synthesis through a combined genetic, phenotypic, and transcriptomic approach. We report on the observed phenotype changes [increased bacterioruberin levels and the loss of purple membrane (PM)] between the Halobacterium salinarum R1 and its CYP174A1-deletion mutant. In addition, we report on the whole-genome DNA microarray analysis, which supports the phenotype of PM loss. This work expands our understanding of the bop-gene regulon, and its relation to carotenoid biosynthesis, and sheds light on our broader understanding of the role (s) of CYP174A1 in archaeal pigment synthesis. To date, this is the first study in which the physiological role of any cytochrome P450 monooxygenase (CYP450) in extremely halophilic archaea has been reported

    Safety of panitumumab-IRDye800CW and cetuximab-IRDye800CW for fluorescence-guided surgical navigation in head and neck cancers

    Get PDF
    Purpose: To demonstrate the safety and feasibility of leveraging therapeutic antibodies for surgical imaging. Procedures: We conducted two phase I trials for anti-epidermal growth factor receptor antibodies cetuximab-IRDye800CW (n=12) and panitumumab-IRDye800CW (n=15). Adults with biopsy-confirmed head and neck squamous cell carcinoma scheduled for standard-of-care surgery were eligible. For cetuximab-IRDye800CW, cohort 1 was intravenously infused with 2.5 mg/m(2), cohort 2 received 25 mg/m(2), and cohort 3 received 62.5 mg/m(2). For panitumumab-IRDye800CW, cohorts received 0.06 mg/kg, 0.5 mg/kg, and 1 mg/kg, respectively. Electrocardiograms and blood samples were obtained, and patients were followed for 30 days post-study drug infusion. Results: Both fluorescently labeled antibodies had similar pharmacodynamic properties and minimal toxicities. Two infusion reactions occurred with cetuximab and none with panitumumab. There were no grade 2 or higher toxicities attributable to cetuximab-IRDye800CW or panitumumab-IRDye800CW; fifteen grade 1 adverse events occurred with cetuximab-I RDye800CW, and one grade 1 occurred with panitumumab-IRDye800CW. There were no significant differences in QTc prolongation between the two trials (p=0.8). Conclusions: Panitumumab-IRDye800CW and cetuximab-IRDye800CW have toxicity and pharmacodynamic profiles that match the parent compound, suggesting that other therapeutic antibodies may be repurposed as imaging agents with limited preclinical toxicology data

    Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    Get PDF
    Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photo-oxidation under a range of controlled conditions (relative humidity or RH ~65ā€“89%, volatile organic compound-to-NOx or VOC / NOx ~3ā€“9 and NOx ~2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene but low isoprene emitter, and its emissions were observed to produce measurable amounts of secondary organic aerosol (SOA) via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26ā€“39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e. in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photo-oxidation products of the minor volatile organic compounds (VOCs) co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally isoprene-emitting landscapes in Southeast Asia. Moreover, in general the amount of aerosol mass produced from the emissions of the principally isoprene-emitting plants was less than would be expected from published single-VOC experiments, if co-emitted species were solely responsible for the final SOA mass. Interpretation of the results obtained from the fig data sets leaves room for a potential role for isoprene in inhibiting SOA formation under certain ambient atmospheric conditions, although instrumental and experimental constraints impose a level of caution in the interpretation of the results. Concomitant gas- and aerosol-phase composition measurements also provide a detailed overview of numerous key oxidation mechanisms at work within the systems studied, and their combined analysis provides insight into the nature of the SOA formed

    Admission Hyperglycemia Predicts a Worse Outcome in Stroke Patients Treated With Intravenous Thrombolysis

    Get PDF
    OBJECTIVE: Admission hyperglycemia has been associated with worse outcomes in ischemic stroke. We hypothesized that hyperglycemia (glucose &gt;8.0 mmol/l) in the hyperacute phase would be independently associated with increased mortality, symptomatic intracerebral hemorrhage (SICH), and poor functional status at 90 days in stroke patients treated with intravenous tissue plasminogen activator (IV-tPA). RESEARCH DESIGN AND METHODS: Using data from the prospective, multicenter Canadian Alteplase for Stroke Effectiveness Study (CASES), the association between admission glucose &gt;8.0 mmol/l and mortality, SICH, and poor functional status at 90 days (modified Rankin Scale &gt;1) was examined. Similar analyses examining glucose as a continuous measure were conducted. RESULTS: Of 1,098 patients, 296 (27%) had admission hyperglycemia, including 18% of those without diabetes and 70% of those with diabetes. After multivariable logistic regression, admission hyperglycemia was found to be independently associated with increased risk of death (adjusted risk ratio 1.5 [95% CI 1.2-1.9]), SICH (1.69 [0.95-3.00]), and a decreased probability of a favorable outcome at 90 days (0.7 [0.5-0.9]). An incremental risk of death and SICH and unfavorable 90-day outcomes was observed with increasing admission glucose. This observation held true for patients with and without diabetes. CONCLUSIONS: In this cohort of IV-tPA-treated stroke patients, admission hyperglycemia was independently associated with increased risk of death, SICH, and poor functional status at 90 days. Treatment trials continue to be urgently needed to determine whether this is a modifiable risk factor for poor outcome

    The role of insulin therapy and glucose normalisation in patients with acute coronary syndrome

    Get PDF
    Patients with acute myocardial infarction (AMI) and diabetes mellitus, as well as patients admitted with elevated blood glucose without known diabetes, have impaired outcome. Therefore intensive glucose-lowering therapy with insulin (IGL) has been proposed in diabetic or hyperglycaemic patients and has been shown to improve survival and reduce incidence of adverse events. The current manuscript provides an overview of randomised controlled trials investigating the effect of IGL. Furthermore, systematic glucoseā€“insulinā€“potassium infusion (GIK) has been studied to improve outcome after AMI. In spite of positive findings in some early studies, GIK did not show any beneficial effects in recent clinical trials and thus this concept has been abandoned. While IGL targeted to achieve normoglycaemia improves outcome in patients with AMI, achievement of glucose regulation is difficult and carries the risk of hypoglycaemia. More research is needed to determine the optimal glucose target levels in AMI and to investigate whether computerised glucose protocols and continuous glucose sensors can improve safety and efficacy of IGL

    Implementing glucose control in intensive care: a multicenter trial using statistical process control

    Get PDF
    Glucose control (GC) with insulin decreases morbidity and mortality of critically ill patients. In this study we investigated GC performance over time during implementation of GC strategies within three intensive care units (ICUs) and in routine clinical practice. All adult critically ill patients who stayed for >24 h between 1999 and 2007 were included. Effects of implementing local GC guidelines and guideline revisions on effectiveness/efficiency-related indicators, safety-related indicators, and protocol-related indicators were measured. Data of 17,111 patient admissions were evaluated, with 714,141 available blood glucose levels (BGL) measurements. Mean BGL, time to reach target, hyperglycemia index, sampling frequency, percentage of hyperglycemia events, and in-range measurements statistically changed after introducing GC in all ICUs. The introduction of simple rules on GC had the largest effect. Subsequent changes in the protocol had a smaller effect than the introduction of the protocol itself. As soon as the protocol was introduced, in all ICUs the percentage of hypoglycemia events increased. Various revisions were implemented to reduce hypoglycemia events, but levels never returned to those from pre-implementation. More intensive implementation strategies including the use of a decision support system resulted in better control of the process. There are various strategies to achieve GC in routine clinical practice but with variable success. All of them were associated with an increase in hypoglycemia events, but GC was never stopped. Instead, these events have been accepted and managed. Statistical process control is a useful tool for monitoring phenomena over time and captures within-institution change

    Short tandem repeat profiling: part of an overall strategy for reducing the frequency of cell misidentification

    Get PDF
    The role of cell authentication in biomedical science has received considerable attention, especially within the past decade. This quality control attribute is now beginning to be given the emphasis it deserves by granting agencies and by scientific journals. Short tandem repeat (STR) profiling, one of a few DNA profiling technologies now available, is being proposed for routine identification (authentication) of human cell lines, stem cells, and tissues. The advantage of this technique over methods such as isoenzyme analysis, karyotyping, human leukocyte antigen typing, etc., is that STR profiling can establish identity to the individual level, provided that the appropriate number and types of loci are evaluated. To best employ this technology, a standardized protocol and a data-driven, quality-controlled, and publically searchable database will be necessary. This public STR database (currently under development) will enable investigators to rapidly authenticate human-based cultures to the individual from whom the cells were sourced. Use of similar approaches for non-human animal cells will require developing other suitable loci sets. While implementing STR analysis on a more routine basis should significantly reduce the frequency of cell misidentification, additional technologies may be needed as part of an overall authentication paradigm. For instance, isoenzyme analysis, PCR-based DNA amplification, and sequence-based barcoding methods enable rapid confirmation of a cell lineā€™s species of origin while screening against cross-contaminations, especially when the cells present are not recognized by the species-specific STR method. Karyotyping may also be needed as a supporting tool during establishment of an STR database. Finally, good cell culture practices must always remain a major component of any effort to reduce the frequency of cell misidentification
    • ā€¦
    corecore