614 research outputs found

    Morphometric study of Acipenser nuccurii (Bonaparte, 1836) in fish farm individuals

    Get PDF
    The main objective of this study was to analyse differences and similarities in morphometric characteristics among specimens of the same year class of Acipenser naccarii (Bonaparte, 1836), comparing fish raised either in Italy or Spain. All specimens were F1 of captive broodstock in Italy. Fifteen biometric variables were measured, and three derived indices were calculated, on 30 individuals of 3+ year class from Lombardy (Italy) and 90 individuals of I+, 2+ and 3+ year class from Riofrio (Granada, Spain). A stepwise discriminate analysis (SDA) was carried out, and the results were contrasted using a non-hierarchical cluster analysis. The two groups proved to be similar, so a principal component analysis and a simple regression analysis were performed on all individuals, taking total length (TI) as the independent variable and all the biometric variables as dependent. The study revealed that although the Soljan index (i.e. ratio of mouth width to snout length) is related to TI, and is a valid taxonomic characteristic, the CA index (i.e. relative position of the barbels) and FB index (i.e. ratio of snout length to width) are also valid characteristics for individuals longer than 57 cm, being independent of TI

    On quantitative analysis of interband recombination dynamics: Theory and application to bulk ZnO

    Full text link
    The issue of the quantitative analysis of time-resolved photoluminescence experiments is addressed by developing and describing two approaches for determination of unimolecular lifetime, bimolecular recombination coefficient, and equilibrium free-carrier concentration, based on a quite general second-order expression of the electron-hole recombination rate. Application to the case of band-edge emission of ZnO single crystals is reported, evidencing the signature of sub-nanosecond second-order recombination dynamics for optical transitions close to the interband excitation edge. The resulting findings are in good agreement with the model prediction and further confirm the presence, formerly evidenced in literature by non-optical methods, of near-surface conductive layers in ZnO crystals with sheet charge densities of about 3{\div}5*10^13 cm^-2Comment: 4 pages, 5 figure

    Saldatura e trattamento termico laser di acciai inossidabili bifasici

    Get PDF
    Nonostante la loro continua diffusione, la saldatura laser degli acciai inossidabili bifasici rimane un processo molto critico, a causa del decadimento delle proprietà meccaniche e di resistenza alla corrosione che si verifica nel giunto. Presentiamo qui un procedimento innovativo di trattamento laser localizzato in grado di ripristinare le proprietà meccaniche e la resistenza alla corrosione del giunto inossidabile bifasico saldato laser del tipo SAF 2205

    Effect of Doublon-Holon Binding on Mott transition---Variational Monte Carlo Study of Two-Dimensional Bose Hubbard Models

    Full text link
    To understand the mechanism of Mott transitions in case of no magnetic influence, superfluid-insulator (Mott) transitions in the S=0 Bose Hubbard model at unit filling are studied on the square and triangular lattices, using a variational Monte Carlo method. In trial many-body wave functions, we introduce various types of attractive correlation factors between a doubly-occupied site (doublon, D) and an empty site (holon, H), which play a central role for Mott transitions, in addition to the onsite repulsive (Gutzwiller) factor. By optimizing distance-dependent parameters, we study various properties of this type of wave functions. With a hint from the Mott transition arising in a completely D-H bound state, we propose an improved picture of Mott transitions, by introducing two characteristic length scales, the D-H binding length ξdh\xi_{\rm dh} and the minimum D-D exclusion length ξdd\xi_{\rm dd}. Generally, a Mott transition occurs when ξdh\xi_{\rm dh} becomes comparable to ξdd\xi_{\rm dd}. In the conductive (superfluid) state, domains of D-H pairs overlap with each other (ξdh>ξdd\xi_{\rm dh}>\xi_{\rm dd}); thereby D and H can propagate independently as density carriers by successively exchanging the partners. In contrast, intersite repulsive Jastrow (D-D and H-H) factors have little importance for the Mott transition.Comment: 16 pages, 22 figures, submitted to J. Phys. Soc. Jp

    Effects of Long-Range Correlations on Nonmagnetic Mott Transitions in Hubbard model on Square Lattice

    Full text link
    The mechanism of Mott transition in the Hubbard model on the square lattice is studied without explicit introduction of magnetic and superconducting correlations, using a variational Monte Carlo method. In the trial wave functions, we consider various types of binding factors between a doubly-occupied site (doublon, D) and an empty site (holon, H), like a long-range type as well as a conventional nearest-neighbor type, and add independent long-range D-D (H-H) factors. It is found that a wide choice of D-H binding factor leads to Mott transitions at critical values near the band width. We renew the D-H binding picture of Mott transitions by introducing two characteristic length scales, the D-H binding length l_{DH} and the minimum D-D distance l_{DD}, which we appropriately estimate. A Mott transition takes place at l_{DH}=l_{DD}. In the metallic regime (l_{DH}>l_{DD}), the domains of D-H pairs overlap with one another, thereby doublons and holons can move independently by exchanging the partners one after another. In contrast, the D-D factors give only a minor contribution to the Mott transition.Comment: 13 pages, 18 figures, submitted to J. Phys. Soc. Jp

    Mott Transitions and d-wave Superconductivity in Half-Filled-Band Hubbard Model on Square Lattice with Geometric Frustration

    Full text link
    Mechanisms of Mott transitions and dx2-y2-wave superconductivity (SC) are studied in the half-filled-band Hubbard model on square lattices with a diagonal hopping term (t'), using an optimization (or correlated) variational Monte Carlo method. In the trial wave functions, a doublon-holon binding effect is introduced in addition to the onsite Gutzwiller projection. We mainly treat a d-wave singlet state and a projected Fermi sea. In both wave functions, first-order Mott transitions without direct relevance to magnetic orders take place at U=Uc approximately of the bandwidth for arbitrary t'/t. These transitions originate in the binding or unbinding of a doublon to a holon. d-wave SC appears in a narrow range immediately below Uc. The robust d-wave superconducting correlation are necessarily accompanied by enhanced antiferromagnetic correlation; the strength of SC becomes weak, as t'/t increases.Comment: 18 pages, 30 figure

    Current Response in Extended Systems as a Geometric Phase: Application to Variational Wavefunctions

    Get PDF
    The linear response theory for current is investigated in a variational context. Expressions are derived for the Drude and superfluid weights for general variational wavefunctions. The expression for the Drude weight highlights the difficulty in its calculation since it depends on the exact energy eigenvalues which are usually not available in practice. While the Drude weight is not available in a simple form, the linear current response is shown to be expressible in terms of a geometric phase, or alternatively in terms of the expectation value of the total position shift operator. The contribution of the geometric phase to the current response is then analyzed for some commonly used projected variational wavefunctions (Baeriswyl, Gutzwiller, and combined). It is demonstrated that this contribution is independent of the projectors themselves and is determined by the wavefunctions onto which the projectors are applied.Comment: 13 pages, 1 tabl
    corecore