53 research outputs found
Fast Groupwise Registration Using Multi-Level and Multi-Resolution Graph Shrinkage
Groupwise registration aligns a set of images to a common space. It can however be inefficient and ineffective when dealing with datasets with significant anatomical variations. To mitigate these problems, we propose a groupwise registration framework based on hierarchical multi-level and multi-resolution shrinkage of a graph set. First, to deal with datasets with complex inhomogeneous image distributions, we divide the images hierarchically into multiple clusters. Since the images in each cluster have similar appearances, they can be registered effectively. Second, we employ a multi-resolution strategy to reduce computational cost. Experimental results on two public datasets show that our proposed method yields state-of-the-art registration accuracy with significantly reduced computational time
BIRNet: Brain Image Registration Using Dual-Supervised Fully Convolutional Networks
In this paper, we propose a deep learning approach for image registration by
predicting deformation from image appearance. Since obtaining ground-truth
deformation fields for training can be challenging, we design a fully
convolutional network that is subject to dual-guidance: (1) Coarse guidance
using deformation fields obtained by an existing registration method; and (2)
Fine guidance using image similarity. The latter guidance helps avoid overly
relying on the supervision from the training deformation fields, which could be
inaccurate. For effective training, we further improve the deep convolutional
network with gap filling, hierarchical loss, and multi-source strategies.
Experiments on a variety of datasets show promising registration accuracy and
efficiency compared with state-of-the-art methods
Region-Adaptive Deformable Registration of CT/MRI Pelvic Images via Learning-Based Image Synthesis
Registration of pelvic CT and MRI is highly desired as it can facilitate effective fusion of two modalities for prostate cancer radiation therapy, i.e., using CT for dose planning and MRI for accurate organ delineation. However, due to the large inter-modality appearance gaps and the high shape/appearance variations of pelvic organs, the pelvic CT/MRI registration is highly challenging. In this paper, we propose a region-adaptive deformable registration method for multi-modal pelvic image registration. Specifically, to handle the large appearance gaps, we first perform both CT-to-MRI and MRI-to-CT image synthesis by multi-target regression forest (MT-RF). Then, to use the complementary anatomical information in the two modalities for steering the registration, we select key points automatically from both modalities and use them together for guiding correspondence detection in the region-adaptive fashion. That is, we mainly use CT to establish correspondences for bone regions, and use MRI to establish correspondences for soft tissue regions. The number of key points is increased gradually during the registration, to hierarchically guide the symmetric estimation of the deformation fields. Experiments for both intra-subject and inter-subject deformable registration show improved performances compared with state-of-the-art multi-modal registration methods, which demonstrate the potentials of our method to be applied for the routine prostate cancer radiation therapy
Adversarial learning for mono- or multi-modal registration
This paper introduces an unsupervised adversarial similarity network for image registration. Unlike existing deep learning registration methods, our approach can train a deformable registration network without the need of ground-truth deformations and specific similarity metrics. We connect a registration network and a discrimination network with a deformable transformation layer. The registration network is trained with the feedback from the discrimination network, which is designed to judge whether a pair of registered images are sufficiently similar. Using adversarial training, the registration network is trained to predict deformations that are accurate enough to fool the discrimination network. The proposed method is thus a general registration framework, which can be applied for both mono-modal and multi-modal image registration. Experiments on four brain MRI datasets and a multi-modal pelvic image dataset indicate that our method yields promising registration performance in accuracy, efficiency and generalizability compared with state-of-the-art registration methods, including those based on deep learning
Pelvic Organ Segmentation Using Distinctive Curve Guided Fully Convolutional Networks
Accurate segmentation of pelvic organs (i.e., prostate, bladder, and rectum) from CT image is crucial for effective prostate cancer radiotherapy. However, it is a challenging task due to: 1) low soft tissue contrast in CT images and 2) large shape and appearance variations of pelvic organs. In this paper, we employ a two-stage deep learning-based method, with a novel distinctive curve-guided fully convolutional network (FCN), to solve the aforementioned challenges. Specifically, the first stage is for fast and robust organ detection in the raw CT images. It is designed as a coarse segmentation network to provide region proposals for three pelvic organs. The second stage is for fine segmentation of each organ, based on the region proposal results. To better identify those indistinguishable pelvic organ boundaries, a novel morphological representation, namely, distinctive curve, is also introduced to help better conduct the precise segmentation. To implement this, in this second stage, a multi-task FCN is initially utilized to learn the distinctive curve and the segmentation map separately and then combine these two tasks to produce accurate segmentation map. The final segmentation results of all three pelvic organs are generated by a weighted max-voting strategy. We have conducted exhaustive experiments on a large and diverse pelvic CT data set for evaluating our proposed method. The experimental results demonstrate that our proposed method is accurate and robust for this challenging segmentation task, by also outperforming the state-of-the-art segmentation methods
Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis
In prostate cancer radiotherapy, computed tomography (CT) is widely used for dose planning purposes. However, because CT has low soft tissue contrast, it makes manual contouring difficult for major pelvic organs. In contrast, magnetic resonance imaging (MRI) provides high soft tissue contrast, which makes it ideal for accurate manual contouring. Therefore, the contouring accuracy on CT can be significantly improved if the contours in MRI can be mapped to CT domain by registering MRI with CT of the same subject, which would eventually lead to high treatment efficacy. In this paper, we propose a bi-directional image synthesis based approach for MRI-to-CT pelvic image registration. First, we use patch-wise random forest with auto-context model to learn the appearance mapping from CT to MRI domain, and then vice versa. Consequently, we can synthesize a pseudo-MRI whose anatomical structures are exactly same with CT but with MRI-like appearance, and a pseudo-CT as well. Then, our MRI-to-CT registration can be steered in a dual manner, by simultaneously estimating two deformation pathways: 1) one from the pseudo-CT to the actual CT and 2) another from actual MRI to the pseudo-MRI. Next, a dual-core deformation fusion framework is developed to iteratively and effectively combine these two registration pathways by using complementary information from both modalities. Experiments on a dataset with real pelvic CT and MRI have shown improved registration performance of the proposed method by comparing it to the conventional registration methods, thus indicating its high potential of translation to the routine radiation therapy
- …