29,723 research outputs found

    Searching for Charged Higgs Boson in Polarized Top Quark

    Full text link
    The charged Higgs boson is quite common in many new physics models. In this study we examine the potential of observing a heavy charged Higgs boson in its decay mode of top-quark and bottom-quark in the Type-II Two-Higgs-Doublet-Model. In this model, the chirality structure of the coupling of charged Higgs boson to the top- and bottom-quark is very sensitive to the value of tanβ\tan\beta. As the polarization of the top-quark can be measured experimentally from the top-quark decay products, one could make use of the top-quark polarization to determine the value of tanβ\tan\beta. We preform a detailed analysis of measuring top-quark polarization in the production channels gbtHgb\to tH^- and gbˉtˉH+g\bar{b}\to \bar{t}H^+. We calculate the helicity amplitudes of the charged Higgs boson production and decay.Our calculation shows that the top-quark from the charged Higgs boson decay provides a good probe for measuring tanβ\tan\beta, especially for the intermediate tanβ\tan\beta region. On the contrary, the top-quark produced in association with the charged Higgs boson cannot be used to measure tanβ\tan\beta because its polarization is highly contaminated by the tt-channel kinematics.Comment: 21 pages, 12 figures, 2 table

    Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    Full text link
    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the 2D mean-field theory indicates that the quantum fluctuations are much more pronounced than those in 3D. In this work, we show that the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of 2D Bose gases and determine the ratio of the composite boson scattering length aBa_{\rm B} to the fermion scattering length a2Da_{\rm 2D}. We find aB0.56a2Da_{\rm B}\simeq 0.56 a_{\rm 2D}, in good agreement with the exact four-body calculation. We compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.Comment: Published versio
    corecore