7 research outputs found

    Dysregulation of Macrophage-Secreted Cathepsin B Contributes to HIV-1-Linked Neuronal Apoptosis

    Get PDF
    Chronic HIV infection leads to the development of cognitive impairments, designated as HIV-associated neurocognitive disorders (HAND). The secretion of soluble neurotoxic factors by HIV-infected macrophages plays a central role in the neuronal dysfunction and cell death associated with HAND. One potentially neurotoxic protein secreted by HIV-1 infected macrophages is cathepsin B. To explore the potential role of cathepsin B in neuronal cell death after HIV infection, we cultured HIV-1ADA infected human monocyte-derived macrophages (MDM) and assayed them for expression and activity of cathepsin B and its inhibitors, cystatins B and C. The neurotoxic activity of the secreted cathepsin B was determined by incubating cells from the neuronal cell line SK-N-SH with MDM conditioned media (MCM) from HIV-1 infected cultures. We found that HIV-1 infected MDM secreted significantly higher levels of cathepsin B than did uninfected cells. Moreover, the activity of secreted cathepsin B was significantly increased in HIV-infected MDM at the peak of viral production. Incubation of neuronal cells with supernatants from HIV-infected MDM resulted in a significant increase in the numbers of apoptotic neurons, and this increase was reversed by the addition of either the cathepsin B inhibitor CA-074 or a monoclonal antibody to cathepsin B. In situ proximity ligation assays indicated that the increased neurotoxic activity of the cathepsin B secreted by HIV-infected MDM resulted from decreased interactions between the enzyme and its inhibitors, cystatins B and C. Furthermore, preliminary in vivo studies of human post-mortem brain tissue suggested an upregulation of cathepsin B immunoreactivity in the hippocampus and basal ganglia in individuals with HAND. Our results demonstrate that HIV-1 infection upregulates cathepsin B in macrophages, increases cathepsin B activity, and reduces cystatin-cathepsin interactions, contributing to neuronal apoptosis. These findings provide new evidence for the role of cathepsin B in neuronal cell death induced by HIV-infected macrophages

    A candidate gene study of intermediate histopathological phenotypes in HIV-associated neurocognitive disorders

    No full text
    HIV-associated neurocognitive disorders (HAND) describe a spectrum of neuropsychological impairment caused by HIV-1 infection. While the sequence of cellular and physiological events that lead to HAND remains obscure, it likely involves chronic neuroinflammation. Host genetic markers that increase the risk for HAND have been reported, but replication of such studies is lacking, possibly due to inconsistent application of a behavioral phenotype across studies. In the current study, we used histopathologic phenotypes in order to validate putative risk alleles for HAND. The National NeuroAIDS Tissue Consortium, a longitudinal study of the neurologic manifestations of HIV. Data and specimens were obtained from 175 HIV-infected adults. After determining several potential covariates of neurocognitive functioning, we quantified levels of six histopathological markers in the frontal lobe in association with neurocognitive functioning: SYP, MAP 2, HLA-DR, Iba1, GFAP, and β-amyloid. We then determined alleles of 15 candidate genes for their associations with neurocognitive functioning and histopathological markers. Finally, we identified the most plausible causal pathway based on our data using a multi-stage linear regression-based mediation analysis approach. None of the genetic markers were associated with neurocognitive functioning. Of the histopathological markers, only MAP 2 and SYP were associated with neurocognitive functioning; however, MAP 2 and SYP did not vary as a function of genotype. Mediation analysis suggests a causal pathway in which presynaptic degeneration (SYP) leads to somatodendritic degeneration (MAP 2) and ultimately neurocognitive impairment. This study did not support the role of host genotype in the histopathology underlying HAND. The findings lend further support for synaptodendritic degeneration as the proximal underlying neuropathological substrate of HAND

    Recent sexual violence exposure is associated with immune biomarkers of HIV susceptibility in women

    No full text
    Problem: HIV/AIDS and sexual violence act synergistically and compromise women\u27s health. Yet, immuno-biological mechanisms linking sexual violence and increased HIV susceptibility are poorly understood. Methods: We conducted a cross-sectional pilot study of HIV-uninfected women, comparing 13 women exposed to forced vaginal penetration within the past 12 weeks (Exposed) with 25 Non-Exposed women. ELISA assays were conducted for 49 biomarkers associated with HIV pathogenesis in plasma and cervicovaginal lavage (CVL). Differences between Exposed and Non-Exposed were analyzed by linear and logistic regression, using propensity score weighting to control for age, race, socioeconomic status, menstrual cycle, and contraceptive use. Results: In CVL, Exposed women had significantly reduced chemokines MIP-3α (p \u3c.01), MCP-1 (p \u3c.01), and anti-HIV/wound-healing thrombospondin-1 (p =.03). They also had significantly increased inflammatory cytokine IL-1α (p \u3c 0.01) and were more likely to have detectable wound-healing PDGF (p =.02). In plasma, Exposed women had reduced chemokines MIP-3α (p \u3c.01) and IL-8 (p \u3c.01), anti-inflammatory cytokine TGF-β (p =.02), anti-HIV/antimicrobial HBD–2 (p =.02), and wound-healing MMP-1 (p = 0.02). They also had increased thrombospondin-1 (p \u3c.01) and Cathepsin B (p =.01). After applying the stringent method of false discovery rate adjustment, differences for IL-1α (p =.05) and MCP-1 (p =.03) in CVL and MIP-3α (p =.03) in plasma remained significant. Conclusions: We report systemic and mucosal immune dysregulation in women exposed to sexual violence. As these biomarkers have been associated with HIV pathogenesis, dysregulation may increase HIV susceptibility
    corecore