67 research outputs found

    Comparative analysis of density histograms and visual scores in incremental and volumetric high-resolution computed tomography of the chest in idiopathic pulmonary fibrosis patients

    Get PDF
    Background: Volumetric high-resolution computed tomography (HRCT) of the chest has recently replaced incremental CT in the diagnostic workup of idiopathic pulmonary fibrosis (IPF). Concomitantly, visual and quantitative scores have been proposed for disease extent assessment to ameliorate disease management. Purpose: To compare the performance of density histograms (mean lung attenuation, skewness, and kurtosis) and visual scores, along with lung function correlations, in IPF patients submitted to incremental or volumetric thorax HRCT. Material and methods: Clinical data and CT scans of 89 newly diagnosed and therapy-naive IPF patients were retrospectively evaluated. Results: Forty-six incremental and 43 volumetric CT scans were reviewed. No differences of density histograms and visual scores estimates were found by comparing two HRCT techniques, with an optimal inter-operator agreement (concordance correlation coefficient >0.90 in all instances). Single-breath diffusing lung capacity for carbon monoxide (DLCOsb) was inversely related with the Best score (r = −00.416; p = 0.014), the Kazerooni fibrosis extent (r = −0.481; p = 0.004) and the mean lung attenuation (r = −0.382; p = 0.026), while a positive correlation was observed with skewness (r = 0.583; p = 0.001) and kurtosis (r = 0.543; p = 0.001) in the incremental HRCT sub-group. Similarly, in the volumetric CT sub-cohort, DLCOsb was significantly associated with skewness (r = 0.581; p = 0.007) and kurtosis (r = 0.549; p = 0.018). Correlations with visual scores were not confirmed. Forced vital capacity significantly related to all density indices independently on HRCT technique. Conclusions: Density histograms and visual scores similarly perform in incremental and volumetric HRCT. Density quantification displays an optimal reproducibility and proves to be superior to visual scoring as more strongly correlated with lung function

    Structural evolution of the El Salvador Fault Zone: an evolving fault system within a volcanic arc.

    Get PDF
    The El Salvador Fault Zone, firstly identifiedafter the 13th February 2001 Mw 6.6 El Salvador earthquake, is a 150 km long,20 km wide right-lateral strike-slip fault system. Ruptures along the ESFZ arethought to be responsible for most of the historical destructive earthquakesalong the El Salvador Volcanic Arc, as well as for most of the currentseismicity of the area. In this work, we focus on the geological setting of thefault zone by describing its geomorphology and structure, using field-based observations,digital terrain modelling, and aerial photograph interpretation with the aim atcontributing to the understanding of the ESFZ slip behaviour. In particular, weaddress the ESFZ structure, kinematics and evolution with time. The ESFZ is a complex set of traces divided inmajor rupture segments characterized by different geometry, kinematics andgeomorphic expressions. Natural fault exposures and paleoseismic trenchesexcavated along the fault show that the strike slip deformation is distributedin several planes. Both geometry and kinematics of the fault zone areconsistent with a transtensional strain regime.The estimated geological slip-rate for the mainfault segments by paleoseismic trenches and displaced geomorphic features impliesa deficit in velocity of the fault compared to the available GPS velocitiesdata. The high vertical scarps of some fault segments would require quaternaryslip rates not coherent neither with measured GPS velocities nor with sliprates obtained from paleoseismic analysis. This mismatch suggests apre-existing graben structure that would be inherited from the previousregional roll back related extensional stage. We consider that the ESFZ isusing this relict structure to grow up along it. As a result, we propose amodel for ESFZ development consistent with all these observations.La Zona de Falla de El Salvador (ZFES) es un sistema de falla de desgarre dextral de 150 km de longitud y 20 de anchura, que fue identificada por primera vez después del terremoto de Mw 6.6 de El Salvador de febrero de 2001. La mayoría de la sismicidad y de los terremotos históricos destructivos producidos en el arco volcánico salvadoreño han sido producidos por la ruptura de la ZFES. Este trabajo se centra en el marco geológico de la zona de falla describiendo su geomorfología y su estructura a través de observaciones de campo, del estudio de los modelos digitales del terreno y de la interpretación de las fotografías aéreas, con el objetivo de avanzar en el conocimiento del comportamiento de la ZFES. En concreto trataremos del estudio de la estructura, la cinemática y la evolución de la ZFES. La ZFES es un complejo sistema de fallas divididas en varios segmentos que se diferencian en la geometría, la cinemática y la expresión geomorfológica. En los afloramientos de la falla, así como en las trincheras paleosismicas excavadas se ha observado que la deformación de desgarre está distribuida en varios planos y tanto la geometría como la cinemática de la zona de falla indican que la ZFES está bajo un régimen de deformación transtensional. La tasa de deformación estimada para los principales segmentos a través del estudio paleosísmico y del análisis de indicadores geomorfológicos desplazados nos muestra un déficit de velocidad para la falla si lo comparamos con los datos obtenidos por GPS. Estos datos tampoco ayudan a explicar la existencia de grandes escarpes verticales que se observan en algunos segmentos de la falla, y que requerirían tasas de deformación muy elevadas. Esta discrepancia sugiere la existencia de una estructura de graben preexistente que puedo ser producida por el “roll-back” de la placa y que creó una fase extensional en el arco volcánico. En este trabajo consideramos que la ZFES está actualmente desarrollándose sobre la estructura extensional relicta y como resultado proponemos un modelo estructural consistente con estas observaciones

    Paleoseismological evidence of holocene activity of the Los Tollos fault (Murcia, se Spain): a lately formed quaternary tectonic feature of the eastern betic shear zone

    Full text link
    The Los Tollos Fault is a recent and important feature of the Eastern Betic Shear Zone, one of the major tectonic structures in South Iberia accommodating the convergence between Nubian and Eurasian plates in the western Mediterranean. The Los Tollos Fault became active by the end of Middle Pleistocene introducing some paleogeographical modifications. Previously mapped as a secondary normal fault related to the Carrascoy Fault, recent research evidences that the Los Tollos Fault is an independent Holocene active left-lateral reverse fault extending for at least 15 km. Data analysis from 4 trenches dug across the fault has revealed the occurrence of at least two paleo-earthquake events during the Holocene. The most recent event is dated between 2,740 and 2,140 yr BP (8th to 2nd centuries BC). The size of the paleoevents is calculated to be Mw 6.3 – 6.6 following empirical regressions on surface rupture length. The recurrence interval is estimated to be between 2,200-6,860 years, fitting a slip rate for the fault between 0.12 and 0.17 mm/yr. Such parameters highlight the Los Tollos Fault as a tectonic structure with a considerable activity located relatively close to densely populated areas. These seismogenic parameters should be considered in future reassessments of the seismic hazard of the regionThis work forms part of the research activities carried out in the FASEGEO Project (CGL2009-09726) funded by the Spanish Ministry of Science and Innovatio

    Paleoseismological evidence of Holocene activity of the Los Tollos Fault (Murcia, SE Spain): A lately formed Quaternary tectonic feature of the Eastern Betic Shear Zone

    Get PDF
    The Los Tollos Fault is a recent and important feature of the Eastern Betic Shear Zone, one of the major tectonic structures in South Iberia accommodating the convergence between Nubian and Eurasian plates in the western Mediterranean. The Los Tollos Fault became active by the end of Middle Pleistocene introducing some paleogeographical modifications. Previously mapped as a secondary normal fault related to the Carrascoy Fault, recent research evidences that the Los Tollos Fault is an independent Holocene active left-lateral reverse fault extending for at least 15 km. Data analysis from 4 trenches dug across the fault has revealed the occurrence of at least two paleo-earthquake events during the Holocene. The most recent event is dated between 2,740 and 2,140 yr BP (8th to 2nd centuries BC). The size of the paleoevents is calculated to be Mw 6.3 – 6.6 following empirical regressions on surface rupture length. The recurrence interval is estimated to be between 2,200-6,860 years, fitting a slip rate for the fault between 0.12 and 0.17 mm/yr. Such parameters highlight the Los Tollos Fault as a tectonic structure with a considerable activity located relatively close to densely populated areas. These seismogenic parameters should be considered in future reassessments of the seismic hazard of the region.La falla de Los Tollos es una estructura reciente e importante de la Zona de Cizalla de la Bética Oriental, la principal estructura del sureste de la Península Ibérica que acomoda gran parte de la convergencia entre las placas de Eurasia y Nubia en el Mediterráneo Occidental. La falla de Los Tollos, descrita inicialmente como una falla normal secundaria relacionada con la falla de Carrascoy, comenzó su actividad a finales del Pleistoceno Medio generando algunas modificaciones paleogeográficas significativas. El trabajo que aquí presentamos demuestra su activad durante el Holoceno con una cinemática lateral sinestral con componente inversa a lo largo de una longitud de 15 km, e independiente de la Falla de Carrascoy. Del análisis de los datos obtenidos en 4 trincheras paleosismológicas realizadas a lo largo de la traza de la falla, se han podido interpretar la ocurrencia de al menos 2 paleoterremotos durante el Holoceno, acotándose el evento más reciente entre hace 2.740 y 2.140 años (siglos VIII a II a.C.). La magnitud máxima de estos paleoterremotos, estimada mediante correlaciones empíricas que consideran la longitud de rotura en superficie de la falla, se encuentra entre Mw 6,3 y 6,6, con un periodo de recurrencia comprendido entre 2.200 y 6.860 años. La tasa de deslizamiento neta calculada para la falla se estima entre 0,12 y 0,17 mm/a. Estos parámetros identifican la falla de Los Tollos como una estructura activa situada en las cercanías de áreas densamente pobladas y ponen de manifiesto el interés que tendría considerarla en futuras reevaluaciones de la peligrosidad sísmica en la región

    An exceptionally long paleoseismic record of a slow-moving fault: the Alhama de Murcia fault (Eastern Betic Shear Zone, Spain)

    Get PDF
    Most catastrophic earthquakes occur along fast-moving faults, although some of them are triggered by slow-moving ones. Long paleoseismic histories are infrequent in the latter faults. Here, an exceptionally long paleoseismic record (more than 300 k.y.) of a slow-moving structure is presented for the southern tip of the Alhama de Murcia fault (Eastern Betic shear zone), which is characterized by morphological expression of current tectonic activity and by a lack of historical seismicity. At its tip, the fault divides into a splay with two main faults bounding the Góñar fault system. At this area, the condensed sedimentation and the distribution of the deformation in several structures provided us with more opportunities to obtain a complete paleoseismic record than at other segments of the fault. The tectonic deformation of the system was studied by an integrated structural, geomorphological, and paleoseismological approach. Stratigraphic and tectonic features at six paleoseismic trenches indicate that old alluvial units have been repeatedly folded and thrusted over younger ones along the different traces of the structure. The correlation of the event timing inferred for each of these trenches and the application of an improved protocol for the infrared stimulated luminescence (IRSL) dating of K-feldspar allowed us to constrain a paleoseismic record as old as 325 ka. We identifi ed a minimum of six possible paleoearthquakes of Mw = 6-7 and a maximum mean recurrence interval of 29 k.y. This provides compelling evidence for the underestimation of the seismic hazard in the region

    First month prednisone dose predicts prednisone burden during the following 11 months: An observational study from the RELES cohort

    Get PDF
    Aim: To study the influence of prednisone dose during the first month after systemic lupus erythematosus (SLE) diagnosis (prednisone-1) on glucocorticoid burden during the subsequent 11 months (prednisone-2–12). Methods: 223 patients from the Registro Español de Lupus Eritematoso Sistémico inception cohort were studied. The cumulative dose of prednisone-1 and prednisone-2–12 were calculated and recoded into a four-level categorical variable: no prednisone, low dose (up to 7.5 mg/day), medium dose (up to 30 mg/day) and high dose (over 30 mg/day). The association between the cumulative prednisone-1 and prednisone-2–12 doses was tested. We analysed whether the four-level prednisone-1 categorical variable was an independent predictor of an average dose >7.5 mg/day of prednisone-2–12. Adjusting variables included age, immunosuppressives, antimalarials, methyl-prednisolone pulses, lupus nephritis and baseline SLE Disease Activity Index (SLEDAI). Results: Within the first month, 113 patients (51%) did not receive any prednisone, 24 patients (11%) received average low doses, 46 patients (21%) received medium doses and 40 patients (18%) received high doses. There was a strong association between prednisone-1 and prednisone-2–12 dose categories (p7.5 mg/day, while patients receiving low-dose prednisone-1 were not (adjusted OR 1.4, 95% CI 0. 0.38 to 5.2). If the analysis was restricted to the 158 patients with a baseline SLEDAI of =6, the model did not change. Conclusion: The dose of prednisone during the first month after the diagnosis of SLE is an independent predictor of prednisone burden during the following 11 months

    Tectono-stratigraphic response of the Sandino Forearc Basin (N-Costa Rica and W-Nicaragua) to episodes of rough crust and oblique subduction

    Get PDF
    The southern Central American active margin is a world-class site where past and present subduction processes have been extensively studied. Tectonic erosion/accretion and oblique/orthogonal subduction are thought to alternate in space and time along the Middle American Trench. These processes may cause various responses in the upper plate, such as uplift/subsidence, deformation, and volcanic arc migration/ shut-off. We present an updated stratigraphic framework of the Late Cretaceous– Cenozoic Sandino Forearc Basin (SFB) which provides evidence of sedimentary response to tectonic events. Since its inception, the basin was predominantly filled with deep-water volcaniclastic deposits. In contrast, shallow-water deposits appeared episodically in the basin record and are considered as tectonic event markers. The SFB stretches for about 300 km and varies in thickness from 5 km (southern part) to about 16 km (northern part). The drastic, along-basin, thickness variation appears to be the result of (1) differential tectonic evolutions and (2) differential rates of sediment supply. (1) The northern SFB did not experience major tectonic events. In contrast, the reduced thickness of the southern SFB (5 km) is the result of at least four uplift phases related to the collision/accretion of bathymetric reliefs on the incoming plate: (i) the accretion of a buoyant oceanic plateau (Nicoya Complex) during the middle Campanian; (ii) the collision of an oceanic plateau (?) during the late Danian–Selandian; (iii) the collision/accretion of seamounts during the late Eocene–early Oligocene; (iv) the collision of seamounts and ridges during the Pliocene–Holocene. (2) The northwestward thickening of the SFB may have been enhanced by high sediment supply in the Fonseca Gulf area which reflects sourcing from wide, high relief drainage basins. In contrast, sedimentary input has possibly been lower along the southern SFB, due to the proximity of the narrow, lowland isthmus of southern Central America. Moreover, two phases of strongly oblique subduction affected the margin, producing strike-slip faulting in the forearc basin: (1) prior to the Farallon Plate breakup, an Oligocene transpressional phase caused deformation and uplift of the basin depocenter, triggering shallowing-upward of the Nicaraguan Isthmus in the central and northern SFB; (2) a Pleistocene–Holocene transtensional phase drives the NW-directed motion of a forearc sliver and reactivation of the graben-bounding faults of the late Neogene Nicaraguan Depression. We discuss arguments in favour of a Pliocene development of the Nicaraguan Depression and propose that the Nicaraguan Isthmus, which is the apparent rift shoulder of the depression, represents a structure inherited from the Oligocene transpressional phase

    Physics-Based Earthquake Simulations in Slow-Moving Faults: A Case Study From the Eastern Betic Shear Zone (SE Iberian Peninsula)

    Get PDF
    In regions with slow-moving faults, the incompleteness of earthquake and fault data complicates the study of seismic hazard. The instrumental and historical seismic catalogs cover a short period compared with the long-time interval between major events. Paleoseismic evidence allows us to increase the time frame of actual observations, but data is still scarce and imprecise. Physics-based earthquake simulations overcome the limitations of actual earthquake catalogs and generate long-term synthetic seismicity. The RSQSim earthquake simulator used in our study reproduces the earthquake physical processes based on a 3D fault model that contains the kinematics, the long-term slip rates and the rate-and-state friction properties of the main seismogenic sources of a region. The application of earthquake simulations to the Eastern Betic Shear Zone, a slow fault system at southeastern Spain, allows the compilation of 100 kyr-synthetic catalogs of MW > 4.0 events. Multisection earthquakes and complete ruptures of some faults in this region, preferentially on strike-slip dominant ruptures, are possible according to our simulations. The largest MW > 6.5 events are likely as a result of jumping ruptures between the Carboneras and the Palomares faults, with recurrence times of < 20,000 years; and less frequently between the Alhama de Murcia and the Los Tollos faults. A great variability of interevent times is observed between successive synthetic seismic cycles, in addition to the occurrence of complex co-ruptures between faults. Consequently, the occurrence of larger earthquakes, even MW ≥ 7.0, cannot be ruled out, contrasting with the low to moderate magnitudes recorded in the instrumental and historical earthquake catalog

    Quantitative assessment of the sensitivity to desertification in the Bradano River basin (Basilicata, southern Italy)

    No full text
    <p>Desertification is a complex environmental phenomenon that affects many regions worldwide, including the Mediterranean area. Its effects, primarily resulting from climate variations and also influenced by human-induced changes, impact upon potential regional progress due to significant economic losses, social problems and ecological damage. The aim of this study was the identification of sensitive areas to desertification at watershed scale, in the Bradano River basin (Basilicata, southern Italy). The analysis was carried out by means of the model developed within the European project MEDALUS (MEditerranean Desertification And Land USe), which identifies prone areas to desertification through the Environmentally Sensitive Areas (ESAs) index. The model parameters were implemented and processed using a GIS-based approach to evaluate climate, soil, vegetation and management system quality factors, which represent the input for the ESAs assessment. The results indicate that 35% of the study area is highly sensitive to desertification, 49% of the study area has moderate sensitivity to desertification, 12% has low sensitivity and only 4% is non-sensitive to desertification.</p

    Remote sensing and GIS to assess soil erosion with RUSLE3D and USPED at river basin scale in southern Italy

    No full text
    Soil erosion represents one of the most serious land degradation problems, and Mediterranean areas are particularly prone to this phenomenon. In the light of climate change and human-induced variations on the environment, the threat from soil erosion requires considerable attention. Over the last decades, estimation of soil erosion using empirical models has long been an active research topic. Nevertheless, their application over large areas is still a challenge due to data availability and quality. Successful monitoring can be realised with the integration of ancillary data and remote sensing products within a GIS environment. The main purpose of this research was to quantify the amount of soil erosion rate and to identify the spatial patterns of erosion and deposition in the large heterogeneous semi-agricultural Bradano River basin (southern Italy). This study presents the results of application of the Revised Universal Soil Loss Equation for Complex Terrain (RUSLE3D) and the Unit Stream Power-based Erosion Deposition (USPED) models. In order to appreciate the rate of soil loss and the spatial patterns of soil erosion and deposition, the two models were applied and compared through ancillary data and multi-temporal satellite imagery by GIS application. The analysis shows that the mean annual soil erosion rate ranges between 31 and 34 Mg ha− 1 year− 1. According to both models the 37% of the Bradano basin ranges between moderate to extreme soil erosion risk. The total amount of gross soil loss ranges between ~ 1.78 ∗ 106 Mg year− 1, as computed with the RUSLE3D, and ~ 2.10 ∗ 106 Mg year− 1, as computed with the USPED. The analysis and quantification of this phenomenon contribute to an understanding of applicability of those empirical models over large areas
    corecore