463 research outputs found
Exciton Gas Compression and Metallic Condensation in a Single Semiconductor Quantum Wire
We study the metal-insulator transition in individual self-assembled quantum
wires and report optical evidences of metallic liquid condensation at low
temperatures. Firstly, we observe that the temperature and power dependence of
the single nanowire photoluminescence follow the evolution expected for an
electron-hole liquid in one dimension. Secondly, we find novel spectral
features that suggest that in this situation the expanding liquid condensate
compresses the exciton gas in real space. Finally, we estimate the critical
density and critical temperature of the phase transition diagram at
cm and K, respectively.Comment: 4 pages, 5 figure
El grito de la nación por las circunstancias del dia : coloquio gubernativo-político-militar entre D. Fernando N. y D. Juan N., primos hermanos / publícalo un Profesor de Medicina, ahora residente en Palma
CCPB000525515-5Autor segun Palau: Jose Cane
Charge control in laterally coupled double quantum dots
We investigate the electronic and optical properties of InAs double quantum
dots grown on GaAs (001) and laterally aligned along the [110] crystal
direction. The emission spectrum has been investigated as a function of a
lateral electric field applied along the quantum dot pair mutual axis. The
number of confined electrons can be controlled with the external bias leading
to sharp energy shifts which we use to identify the emission from neutral and
charged exciton complexes. Quantum tunnelling of these electrons is proposed to
explain the reversed ordering of the trion emission lines as compared to that
of excitons in our system.Comment: 4 pages, 4 figures submitted to PRB Rapid Com
Wilson-Polchinski exact renormalization group equation for O(N) systems: Leading and next-to-leading orders in the derivative expansion
With a view to study the convergence properties of the derivative expansion
of the exact renormalization group (RG) equation, I explicitly study the
leading and next-to-leading orders of this expansion applied to the
Wilson-Polchinski equation in the case of the -vector model with the
symmetry . As a test, the critical exponents and as well as the subcritical exponent (and higher ones) are estimated
in three dimensions for values of ranging from 1 to 20. I compare the
results with the corresponding estimates obtained in preceding studies or
treatments of other exact RG equations at second order. The
possibility of varying allows to size up the derivative expansion method.
The values obtained from the resummation of high orders of perturbative field
theory are used as standards to illustrate the eventual convergence in each
case. A peculiar attention is drawn on the preservation (or not) of the
reparametrisation invariance.Comment: Dedicated to Lothar Sch\"afer on the occasion of his 60th birthday.
Final versio
Institutiones filosoficae : quas in usum auditorum suorum scribit Franciscus Guimera : tomus secundus Methafisicam comprahendens
Colofón.Antep. grab. calc.Única fecha la del grab. calc., 1758.Ex-libris mss. de Stanislao Canet y LongasEnc. perg.La h. de grab. calc. : "Jose Vergara inv. et del Psal. Moles set. Valencia 1758"La h. de grab. calc. : "M. Ricarte ft", imagen de Santo Tomás
Institutiones filosoficae : quas in usum auditorum suorum scribit Franciscus Guimera : tomus secundus Methafisicam comprahendens
Colofón.Antep. grab. calc.Única fecha la del grab. calc., 1758.Ex-libris mss. de Stanislao Canet y LongasEnc. perg.La h. de grab. calc. : "Jose Vergara inv. et del Psal. Moles set. Valencia 1758"La h. de grab. calc. : "M. Ricarte ft", imagen de Santo Tomás
Slaughterhouse blood as a perfusate for studying myocardial function under ischemic conditions
Abstract Metabolic studies using the in vitro non-recirculating blood-perfused isolated heart model require large volumes of blood. The present study was designed to determine whether heterologous pig blood collected from a slaughterhouse can be used as perfusate for isolated pig hearts perfused under aerobic and constant reduced flow conditions. Eight isolated working pig hearts perfused for 90 min at a constant flow of 1.5 ml g -1 min -1 with non-recirculated blood diluted with KrebsHenseleit bicarbonate buffer at a hematocrit of 23% were compared to eight hearts subjected to the same protocol but perfused only with Krebs-Henseleit bicarbonate buffer solution. Hearts were paced at 100 bpm and subjected to aerobic perfusion at 38ºC. Hearts were weighed before perfusion and at the end of the experiment and the results are reported as percent weight gain (mean ± SD). Comparisons between groups were performed by the Student t-test (P<0.05). After 90 min of perfusion with modified Krebs-Henseleit, perfused hearts presented a larger weight gain than blood-perfused hearts (39.34 ± 9.27 vs 23.13 ± 5.42%, P = 0.003). Left ventricular end-diastolic pressure was higher in the modified Krebs-Henseleit-perfused group than in the blood group (2.8 ± 0.4 vs 2.3 ± 0.3 mmHg, respectively, P = 0.01). We conclude that heterologous blood perfusion, by preserving a more physiological myocardial water content, is a better perfusion fluid than modified Krebs-Henseleit solution for quantitative studies of myocardial metabolism and heart function under ischemic conditions
WS2/MoS2 Heterostructures through Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters
The preparation of 2D stacked layers that combine flakes of different nature, gives rise to countless number of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large family of 2D/2D heterostructures, the one formed by the combination of the most common semiconducting transition metal dichalcogenides WS2/MoS2, has awaken great interest due to its photovoltaic and photoelectrochemical properties. Solution as well as dry physical methods have been developed to optimize the synthesis of these heterostructures. Here a suspension of negatively charged MoS2 flakes is mixed with a methanolic solution of a cationic W3S4-core cluster, giving rise to a homogeneous distribution of the clusters over the layers. In a second step, a calcination under N2 of this molecular/2D heterostructure leads to the formation of clean WS2/MoS2 heterostructures where the photoluminescence of both counterparts is quenched, proving an efficient interlayer coupling. Thus, this chemical method combines the advantages of a solution approach (simple, scalable and low-cost) with the good quality interfaces reached by using more complicated traditional physical methods
Comparison of Different Parallel Implementations of the 2+1-Dimensional KPZ Model and the 3-Dimensional KMC Model
We show that efficient simulations of the Kardar-Parisi-Zhang interface
growth in 2 + 1 dimensions and of the 3-dimensional Kinetic Monte Carlo of
thermally activated diffusion can be realized both on GPUs and modern CPUs. In
this article we present results of different implementations on GPUs using CUDA
and OpenCL and also on CPUs using OpenCL and MPI. We investigate the runtime
and scaling behavior on different architectures to find optimal solutions for
solving current simulation problems in the field of statistical physics and
materials science.Comment: 14 pages, 8 figures, to be published in a forthcoming EPJST special
issue on "Computer simulations on GPU
Far-from-equilibrium quantum many-body dynamics
The theory of real-time quantum many-body dynamics as put forward in Ref.
[arXiv:0710.4627] is evaluated in detail. The formulation is based on a
generating functional of correlation functions where the Keldysh contour is
closed at a given time. Extending the Keldysh contour from this time to a later
time leads to a dynamic flow of the generating functional. This flow describes
the dynamics of the system and has an explicit causal structure. In the present
work it is evaluated within a vertex expansion of the effective action leading
to time evolution equations for Green functions. These equations are applicable
for strongly interacting systems as well as for studying the late-time
behaviour of nonequilibrium time evolution. For the specific case of a bosonic
N-component phi^4 theory with contact interactions an s-channel truncation is
identified to yield equations identical to those derived from the 2PI effective
action in next-to-leading order of a 1/N expansion. The presented approach
allows to directly obtain non-perturbative dynamic equations beyond the widely
used 2PI approximations.Comment: 20 pp., 6 figs; submitted version with added references and typos
corrected
- …