5,160 research outputs found

    Influence of inversion on Mg mobility and electrochemistry in spinels

    Full text link
    Magnesium oxide and sulfide spinels have recently attracted interest as cathode and electrolyte materials for energy-dense Mg batteries, but their observed electrochemical performance depends strongly on synthesis conditions. Using first principles calculations and percolation theory, we explore the extent to which spinel inversion influences Mg2+^{2+} ionic mobility in MgMn2_2O4_4 as a prototypical cathode, and MgIn2_2S4_4 as a potential solid electrolyte. We find that spinel inversion and the resulting changes of the local cation ordering give rise to both increased and decreased Mg2+^{2+} migration barriers, along specific migration pathways, in the oxide as well as the sulfide. To quantify the impact of spinel inversion on macroscopic Mg2+^{2+} transport, we determine the percolation thresholds in both MgMn2_2O4_4 and MgIn2_2S4_4. Furthermore, we analyze the impact of inversion on the electrochemical properties of the MgMn2_2O4_4 cathode via changes in the phase behavior, average Mg insertion voltages and extractable capacities, at varying degrees of inversion. Our results confirm that inversion is a major performance limiting factor of Mg spinels and that synthesis techniques or compositions that stabilize the well-ordered spinel structure are crucial for the success of Mg spinels in multivalent batteries

    A Novel Method for Vibrotactile Proprioceptive Feedback Using Spatial Encoding and Gaussian Interpolation

    Get PDF
    Objective: The bidirectional communication between the user and the prosthesis is an important requirement when developing prosthetic hands. Proprioceptive feedback is fundamental to perceiving prosthesis movement without the need for constant visual attention. We propose a novel solution to encode wrist rotation using a vibromotor array and Gaussian interpolation of vibration intensity. The approach generates tactile sensation that smoothly rotates around the forearm congruently with prosthetic wrist rotation. The performance of this scheme was systematically assessed for a range of parameter values (number of motors and Gaussian standard deviation). Methods: Fifteen able-bodied subjects and one individual with congenital limb deficiency used vibrational feedback to control the virtual hand in the target-achievement test. Performance was assessed by end-point error and efficiency as well as subjective impressions. Results: The results showed a preference for smooth feedback and a higher number of motors (8 and 6 versus 4). With 8 and 6 motors, the standard deviation, determining the sensation spread and continuity, could be modulated through a broad range of values (0.1 - 2) without a significant performance loss (error: ∼ 10%; efficiency: ∼ 30%). For low values of standard deviation (0.1-0.5), the number of motors could be reduced to 4 without a significant performance decrease. Conclusion: The study demonstrated that the developed strategy provided meaningful rotation feedback. Moreover, the Gaussian standard deviation can be used as an independent parameter to encode an additional feedback variable. Significance: The proposed method is a flexible and effective approach to providing proprioceptive feedback while adjusting the trade-off between sensation quality and the number of vibromotors

    Hannes Prosthesis Control Based on Regression Machine Learning Algorithms

    Get PDF
    The quality of life for upper limb amputees can be greatly improved by the adoption of poly-articulated myoelectric prostheses. Typically, in these applications, a pattern recognition algorithm is used to control the system by converting the recorded electromyographic activity (EMG) into complex multi-degrees of freedom (DoFs) movements. However, there is currently a trade-off between the intuitiveness of the control and the number of active DoFs. We here address this challenge by performing simultaneous multi-joint control of the Hannes system and testing several state-of-the-art classifiers to decode hand and wrist movements. The algorithms discriminated multi-DoF movements from forearm EMG signals of 10 healthy subjects reproducing hand opening-closing, wrist flexion-extension and wrist pronation-supination. We first explored the effect of the number of employed EMG electrodes on device performance through the classifiers optimization in terms of F1Score. We further improved classifiers by tuning their respective hyperparameters in terms of the Embedding Optimization Factor. Finally, three mono-lateral amputees tested the optimized algorithms to intuitively and simultaneously control the Hannes system. We found that the algorithms performances were similar to that of healthy subjects, particularly identifying the Non-Linear Regression classifier as the ideal candidate for prosthetic applications

    Elastic and vibrational properties of alpha and beta-PbO

    Full text link
    The structure, electronic and dynamic properties of the two layered alpha (litharge) and beta (massicot) phases of PbO have been studied by density functional methods. The role of London dispersion interactions as leading component of the total interaction energy between layers has been addressed by using the Grimme's approach, in which new parameters for Pb and O atoms have been developed. Both gradient corrected and hybrid functionals have been adopted using Gaussian-type basis sets of polarized triple zeta quality for O atoms and small core pseudo-potential for the Pb atoms. Basis set superposition error (BSSE) has been accounted for by the Boys-Bernardi correction to compute the interlayer separation. Cross check with calculations adopting plane waves that are BSSE free have also been performed for both structures and vibrational frequencies. With the new set of proposed Grimme's type parameters structures and dynamical parameters for both PbO phases are in good agreement with experimental data.Comment: 8 pages, 5 figure

    The newtonian approach in the meteorological tide waves forecasting: preliminary observations in the East Ligurian harbours

    Get PDF
    Sea level oscillations are the superposition of many contributions, among which the main are astronomic and meteorological low-frequency tides. In Ligurian Sea meteo-tide components, being most ample than astronomic fluctuations, drive water exchange in harbours. The present note shows first results about port of Genoa concerning a coherency study between atmospheric variation and corresponding sea level adjustment (meteorological tide). The newtonian forecasting method of meteorological tides is based on measurements of time elapsing between barometric sea level unbalance (Δg) and its meteorological tide compensation (inverse barometer component). Meteorological tide component is independent on the Earth-Moon-Sun gravitational relationships, moreover parameters related to the shifted water mass are too many to describe the phenomenon analytically (basin topography, barometric strength position and time, chemical water quality, off-shore sea circulation, etc.); then, meteorological tide can’t be accurately foreseen by atmospheric pressure measurements only. A gravimeter can detect the geodetic unbalance starting time and a tide-gauge can detect the newtonian compensation (tide wave) coming time. The difference between these two times is the meteorological tide delay. An opportune statistic of this delay provides an experimental law typical for each harbour to forecast the meteo-tide compensation wave delay. This paper describes the methodological procedure adopted and first evidences of the phenomenon in Genoa harbour

    Unfolding jellyfish bloom dynamics along the mediterranean basin by transnational citizen science initiatives

    Get PDF
    Science is addressing global societal challenges, and due to limitations in research financing, scientists are turning to the public at large to jointly tackle specific environmental issues. Citizens are therefore increasingly involved in monitoring programs, appointed as citizen scientists with potential to delivering key data at near to no cost to address environmental challenges, therein fostering scientific knowledge and advising policy- and decision-makers. One of the first and most successful examples of marine citizen science in the Mediterranean is represented by the integrative and collaborative implementation of several jellyfish-spotting campaigns in Italy, Spain, Malta, and Tunisia starting in 2009. Altogether, in terms of time coverage, geographic extent, and number of citizen records, these represent the most effective marine citizen science campaigns thus far implemented in the Mediterranean Sea. Here, we analyzed a collective database merging records over the above four countries, featuring more than 100,000 records containing almost 25,000 observations of jellyfish specimens collected over a period of 3 to 7 years (from 2009 to 2015) by citizen scientists participating in any of the national citizen science programs included in this analysis. Such a wide citizen science exercise demonstrates a valuable and cost-effective tool to understanding ecological drivers of jellyfish proliferation over the Western and Central Mediterranean basins, as well as a powerful contribution to developing tailored adaptation and management strategies; mitigating jellyfish impacts on human activities in coastal zones; and supporting implementation of marine spatial planning, Blue Growth, and conservation strategies

    Determining Supersymmetric Parameters With Dark Matter Experiments

    Get PDF
    In this article, we explore the ability of direct and indirect dark matter experiments to not only detect neutralino dark matter, but to constrain and measure the parameters of supersymmetry. In particular, we explore the relationship between the phenomenological quantities relevant to dark matter experiments, such as the neutralino annihilation and elastic scattering cross sections, and the underlying characteristics of the supersymmetric model, such as the values of mu (and the composition of the lightest neutralino), m_A and tan beta. We explore a broad range of supersymmetric models and then focus on a smaller set of benchmark models. We find that by combining astrophysical observations with collider measurements, mu can often be constrained far more tightly than it can be from LHC data alone. In models in the A-funnel region of parameter space, we find that dark matter experiments can potentially determine m_A to roughly +/-100 GeV, even when heavy neutral MSSM Higgs bosons (A, H_1) cannot be observed at the LHC. The information provided by astrophysical experiments is often highly complementary to the information most easily ascertained at colliders.Comment: 46 pages, 76 figure

    Nutrition in children with CRF and on dialysis

    Get PDF
    The objectives of this study are: (1) to understand the importance of nutrition in normal growth; (2) to review the methods of assessing nutritional status; (3) to review the dietary requirements of normal children throughout childhood, including protein, energy, vitamins and minerals; (4) to review recommendations for the nutritional requirements of children with chronic renal failure (CRF) and on dialysis; (5) to review reports of spontaneous nutritional intake in children with CRF and on dialysis; (6) to review the epidemiology of nutritional disturbances in renal disease, including height, weight and body composition; (7) to review the pathological mechanisms underlying poor appetite, abnormal metabolic rate and endocrine disturbances in renal disease; (8) to review the evidence for the benefit of dietetic input, dietary supplementation, nasogastric and gastrostomy feeds and intradialytic nutrition; (9) to review the effect of dialysis adequacy on nutrition; (10) to review the effect of nutrition on outcome
    corecore