1,175 research outputs found
Cotunneling signatures of Spin-Electric coupling in frustrated triangular molecular magnets
The ground state of frustrated (antiferromagnetic) triangular molecular
magnets is characterized by two total-spin doublets with opposite
chirality. According to a group theory analysis [M. Trif \textit{et al.}, Phys.
Rev. Lett. \textbf{101}, 217201 (2008)] an external electric field can
efficiently couple these two chiral spin states, even when the spin-orbit
interaction (SOI) is absent. The strength of this coupling, , is determined
by an off-diagonal matrix element of the dipole operator, which can be
calculated by \textit{ab-initio} methods [M. F. Islam \textit{et al.}, Phys.
Rev. B \textbf{82}, 155446 (2010)]. In this work we propose that
Coulomb-blockade transport experiments in the cotunneling regime can provide a
direct way to determine the spin-electric coupling strength. Indeed, an
electric field generates a -dependent splitting of the ground state
manifold, which can be detected in the inelastic cotunneling conductance. Our
theoretical analysis is supported by master-equation calculations of quantum
transport in the cotunneling regime. We employ a Hubbard-model approach to
elucidate the relationship between the Hubbard parameters and , and the
spin-electric coupling constant . This allows us to predict the regime in
which the coupling constant can be extracted from experiment
Elementary Excitations of Ferromagnetic Metal Nanoparticles
We present a theory of the elementary spin excitations in transition metal
ferromagnet nanoparticles which achieves a unified and consistent quantum
description of both collective and quasiparticle physics. The theory starts by
recognizing the essential role played by spin-orbit interactions in determining
the energies of ferromagnetic resonances in the collective excitation spectrum
and the strength of their coupling to low-energy particle-hole excitations. We
argue that a crossover between Landau-damped ferromagnetic resonance and
pure-state collective magnetic excitations occurs as the number of atoms in
typical transition metal ferromagnet nanoparticles drops below approximately
, approximately where the single-particle level spacing, ,
becomes larger than, , where is the
ferromagnetic resonance frequency and is the Gilbert damping
parameter. We illustrate our ideas by studying the properties of semi-realistic
model Hamiltonians, which we solve numerically for nanoparticles containing
several hundred atoms. For small nanoparticles, we find one isolated
ferromagnetic resonance collective mode below the lowest particle-hole
excitation energy, at meV. The spectral weight of
this pure excitation nearly exhausts the transverse dynamical susceptibility
spectral weight. As approaches , the
ferromagnetic collective excitation is more likely to couple strongly with
discrete particle-hole excitations. In this regime the distinction between the
two types of excitations blurs. We discuss the significance of this picture for
the interpretation of recent single-electron tunneling experiments.Comment: 19 pages, 13 figure
Magnetization orientation dependence of the quasiparticle spectrum and hysteresis in ferromagnetic metal nanoparticles
We use a microscopic Slater-Koster tight-binding model with short-range
exchange and atomic spin-orbit interactions that realistically captures generic
features of ferromagnetic metal nanoparticles to address the mesoscopic physics
of magnetocrystalline anisotropy and hysteresis in nanoparticle quasiparticle
excitation spectra. Our analysis is based on qualitative arguments supported by
self-consistent Hartree-Fock calculations for nanoparticles containing up to
260 atoms. Calculations of the total energy as a function of magnetization
direction demonstrate that the magnetic anisotropy per atom fluctuates by
several percents when the number of electrons in the particle changes by one,
even for the largest particles we consider. Contributions of individual
orbitals to the magnetic anisotropy are characterized by a broad distribution
with a mean more than two orders of magnitude smaller than its variance and
with no detectable correlations between anisotropy contribution and
quasiparticle energy. We find that the discrete quasiparticle excitation
spectrum of a nanoparticle displays a complex non-monotonic dependence on an
external magnetic field, with abrupt jumps when the magnetization direction is
reversed by the field, explaining recent spectroscopic studies of magnetic
nanoparticles. Our results suggests the existence of a broad cross-over from a
weak spin-orbit coupling to a strong spin-orbit coupling regime, occurring over
the range from approximately 200- to 1000-atom nanoparticles.Comment: 39 pages, 18 figures, to be published in Physical Review
Landau-Zener quantum tunneling in disordered nanomagnets
We study Landau-Zener macroscopic quantum transitions in ferromagnetic metal
nanoparticles containing on the order of 100 atoms. The model that we consider
is described by an effective giant-spin Hamiltonian, with a coupling to a
random transverse magnetic field mimicking the effect of quasiparticle
excitations and structural disorder on the gap structure of the spin collective
modes. We find different types of time evolutions depending on the interplay
between the disorder in the transverse field and the initial conditions of the
system. In the absence of disorder, if the system starts from a low-energy
state, there is one main coherent quantum tunneling event where the
initial-state amplitude is completely depleted in favor of a few discrete
states, with nearby spin quantum numbers; when starting from the highest
excited state, we observe complete inversion of the magnetization through a
peculiar ``backward cascade evolution''. In the random case, the
disorder-averaged transition probability for a low-energy initial state becomes
a smooth distribution, which is nevertheless still sharply peaked around one of
the transitions present in the disorder-free case. On the other hand, the
coherent backward cascade phenomenon turns into a damped cascade with
frustrated magnetic inversion.Comment: 21 pages, 7 figures, to be published in Phys.Rev.
Thin films of a three-dimensional topological insulator in a strong magnetic field: a microscopic study
The response of thin films of BiSe to a strong perpendicular magnetic
field is investigated by performing magnetic bandstructure calculations for a
realistic multi-band tight-binding model. Several crucial features of Landau
quantization in a realistic three-dimensional topological insulator are
revealed. The Landau level is absent in ultra-thin films, in agreement
with experiment. In films with a crossover thickness of five quintuple layers,
there is a signature of the level, whose overall trend as a function of
magnetic field matches the established low-energy effective-model result.
Importantly, we find a field-dependent splitting and a strong spin-polarization
of the level which can be measured experimentally at reasonable field
strengths. Our calculations show mixing between the surface and bulk Landau
levels which causes the character of levels to evolve with magnetic field.Comment: 5 pages, 4 figure
- …