2,341 research outputs found

    A Penalized Multi-trait Mixed Model for Association Mapping in Pedigree-based GWAS

    Full text link
    In genome-wide association studies (GWAS), penalization is an important approach for identifying genetic markers associated with trait while mixed model is successful in accounting for a complicated dependence structure among samples. Therefore, penalized linear mixed model is a tool that combines the advantages of penalization approach and linear mixed model. In this study, a GWAS with multiple highly correlated traits is analyzed. For GWAS with multiple quantitative traits that are highly correlated, the analysis using traits marginally inevitably lose some essential information among multiple traits. We propose a penalized-MTMM, a penalized multivariate linear mixed model that allows both the within-trait and between-trait variance components simultaneously for multiple traits. The proposed penalized-MTMM estimates variance components using an AI-REML method and conducts variable selection and point estimation simultaneously using group MCP and sparse group MCP. Best linear unbiased predictor (BLUP) is used to find predictive values and the Pearson's correlations between predictive values and their corresponding observations are used to evaluate prediction performance. Both prediction and selection performance of the proposed approach and its comparison with the uni-trait penalized-LMM are evaluated through simulation studies. We apply the proposed approach to a GWAS data from Genetic Analysis Workshop (GAW) 18

    Preparation of Novel High-Temperature Polyol Esters from Vegetable Oils

    Get PDF
    The aim of this work was to synthesize a high-temperature polyol ester from Jatropha oil. The synthesis process was accomplished via chemical modifications involving epoxidation to remove the double bonds in Jatropha oil, hydrolysis to add hydroxyl groups, and then esterification with pentaerythritol to form the saturated polyol ester. The high decomposition temperature 359°C of the polyol ester was determined by thermogravimetric analysis. The lower peroxide value 0.07 meq/kg and iodine value 0.02 mg I2/100 g of the polyol esters were also determined

    Radar Enlighten the Dark: Enhancing Low-Visibility Perception for Automated Vehicles with Camera-Radar Fusion

    Full text link
    Sensor fusion is a crucial augmentation technique for improving the accuracy and reliability of perception systems for automated vehicles under diverse driving conditions. However, adverse weather and low-light conditions remain challenging, where sensor performance degrades significantly, exposing vehicle safety to potential risks. Advanced sensors such as LiDARs can help mitigate the issue but with extremely high marginal costs. In this paper, we propose a novel transformer-based 3D object detection model "REDFormer" to tackle low visibility conditions, exploiting the power of a more practical and cost-effective solution by leveraging bird's-eye-view camera-radar fusion. Using the nuScenes dataset with multi-radar point clouds, weather information, and time-of-day data, our model outperforms state-of-the-art (SOTA) models on classification and detection accuracy. Finally, we provide extensive ablation studies of each model component on their contributions to address the above-mentioned challenges. Particularly, it is shown in the experiments that our model achieves a significant performance improvement over the baseline model in low-visibility scenarios, specifically exhibiting a 31.31% increase in rainy scenes and a 46.99% enhancement in nighttime scenes.The source code of this study is publicly available
    • …
    corecore