880 research outputs found

    Unravelling the enigma of proteinuria in burn patients

    Get PDF
    Hu and coworkers in the previous issue of Critical Care provide evidence for the clinical relevance of proteinuria in the outcome of burn patients. Proteinuria is a common finding after severe burns, appears within a short period and is detectable for several weeks. Proteinuria ranging from 0.5 to 3 to 4 g/day is initially of mixed type, then, after a week, gradually changes to tubular proteinuria. The clinical role of proteinuria is still unclear, mainly due to a lack of data on its pathogenesis. Recent studies have demonstrated an association between proteinuria and incidence of inhalation injury, sepsis, acute kidney injury and mortality rate. Proteinuria is considered the mirror of increased systemic capillary permeability, and possibly a direct marker of glomerular and tubular injury. Circulating plasma inflammatory mediators and pro-apoptotic factors reflecting burn injury, sepsis and acute kidney injury can affect the viability and function of tubular cells and podocytes. These studies highlight that proteinuria in burn patients should receive due consideration

    Synthesis and release of platelet-activating factor by human vascular endothelial cells treated with tumor necrosis factor or interleukin 1 alpha.

    Get PDF
    Human endothelial cells synthesize large amounts of platelet-activating factor (PAF) after 30-min treatment with recombinant tumor necrosis factor (TNF). Synthesis of PAF peaks at 4-6 h, whereas in endothelial cells treated with interleukin 1 alpha (IL-1) it peaks at 8-12 h. More than twice as much PAF is synthesized in response to optimal concentrations of TNF than in response to IL-1. However, PAF synthesis is stimulated by lower molar concentrations of IL-1 than TNF. About 30% of PAF produced in response to either TNF or IL-1 is released into the medium, whereas approximately 70% remains cell-associated. Experiments with labeled precursors show that PAF is synthesized de novo in response to TNF. This activity of TNF is inhibited by treating endothelial cells with the inhibitors of protein or RNA synthesis cycloheximide or actinomycin D. This finding may be explained by the observation that TNF induces in endothelial cells an acetyltransferase required for PAF synthesis. The induction of this enzymatic activity precedes the peak of PAF synthesis in TNF-treated cells. After prolonged incubation with either TNF or IL-1, endothelial cells no longer respond to the same monokine, but are still capable of producing PAF when treated with the other monokine. The finding that these monokines do not show reciprocal tachyphylaxis in endothelial cells may be explained by their binding to different receptors. In cells treated simultaneously with different concentrations of TNF and IL-1, PAF synthesis is stimulated in an additive rather than synergistic way. This suggests that PAF is synthesized by the same pathway in response to TNF or IL-1

    Role of ncRNAs in modulation of liver fibrosis by extracellular vesicles

    Get PDF
    Abstract Extracellular vesicles (EVs) are small membrane vesicles carrying bioactive lipids, proteins and nucleic acids of the cell of origin. In particular, EVs carry non-coding RNAs (ncRNAs) and the vesicle membrane may protect them from degradation. Once released within the extracellular space, EVs can transfer their cargo, including ncRNAs, to neighboring or distant cells, thus inducing phenotypical and functional changes that may be relevant in several physio-pathological conditions. This review provides an overview of the role of EV-carried ncRNAs in the modulation of liver fibrosis. In particular, we focused on EV-associated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) involved into the development of liver fibrosis and on the potential use of EV-associated ncRNAs as diagnostic and prognostic biomarkers of liver fibrosis

    Resident Stem Cells and Renal Carcinoma

    Get PDF
    According to the cancer stem cell hypothesis tumors are maintained by a cancer stem cell population which is able to initiate and maintain tumors. Tumor-initiating stem cells display stem or progenitor cell properties such as self-renewal and capacity to re-establish tumors that recapitulate the tumor of origin. In this paper, we discuss data relative to the presence of cancer stem cells in human renal carcinoma and their possible origin from normal resident stem cells. The cancer stem cells identified in human renal carcinomas are not derived from the normal CD133+ progenitors of the kidney, but rather from a more undifferentiated population that retains a mesenchymal phenotype. This population is able to self-renewal, clonogenicity, and in vivo tumor initiation. Moreover, they retain pluripotent differentiation capability, as they can generate not only the epithelial component of the tumor, but also tumor endothelial cells. This suggests that renal cancer stem cells may contribute to the intratumor vasculogenesis
    corecore