1,010 research outputs found

    Experimental evaluation of spatial capture–recapture study design

    Get PDF
    This research was funded by the National Institute of Food and Agriculture, accession 1009581. This is a contribution of the Salamander Population and Adaptation Network (SPARCnet) and contribution #767 of the U.S. Geological Survey’s Amphibian Research and Monitoring Initiative (ARMI).A principal challenge impeding strong inference in analyses of wild populations is the lack of robust and long-term data sets. Recent advancements in analytical tools used in wildlife science may increase our ability to integrate smaller data sets and enhance the statistical power of population estimates. One such advancement, the development of spatial capture-recapture (SCR) methods, explicitly accounts for differences in spatial study designs, making it possible to equate multiple study designs in one analysis. SCR has been shown to be robust to variation in design as long as minimal sampling guidance is adhered to. However, these expectations are based on simulation and have yet to be evaluated in wild populations. Here we conduct a rigorously designed field experiment by manipulating the arrangement of artificial cover objects (ACOs) used to collect data on red-backed salamanders (Plethodon cinereus) to empirically evaluate the effects of design configuration on inference made using SCR. Our results suggest that, using SCR, estimates of space use and detectability are sensitive to study design configuration, namely the spacing and extent of the array, and that caution is warranted when assigning biological interpretation to these parameters. However, estimates of population density remain robust to design except when the configuration of detectors grossly violates existing recommendations.Publisher PDFPeer reviewe

    Interbasin Water Transfer, Riverine Connectivity, and Spatial Controls on Fish Biodiversity

    Get PDF
    BACKGROUND: Large-scale inter-basin water transfer (IBWT) projects are commonly proposed as solutions to water distribution and supply problems. These problems are likely to intensify under future population growth and climate change scenarios. Scarce data on the distribution of freshwater fishes frequently limits the ability to assess the potential implications of an IBWT project on freshwater fish communities. Because connectivity in habitat networks is expected to be critical to species' biogeography, consideration of changes in the relative isolation of riverine networks may provide a strategy for controlling impacts of IBWTs on freshwater fish communities. METHODS/PRINCIPAL FINDINGS: Using empirical data on the current patterns of freshwater fish biodiversity for rivers of peninsular India, we show here how the spatial changes alone under an archetypal IBWT project will (1) reduce freshwater fish biodiversity system-wide, (2) alter patterns of local species richness, (3) expand distributions of widespread species throughout peninsular rivers, and (4) decrease community richness by increasing inter-basin similarity (a mechanism for the observed decrease in biodiversity). Given the complexity of the IBWT, many paths to partial or full completion of the project are possible. We evaluate two strategies for step-wise implementation of the 11 canals, based on economic or ecological considerations. We find that for each step in the project, the impacts on freshwater fish communities are sensitive to which canal is added to the network. CONCLUSIONS/SIGNIFICANCE: Importantly, ecological impacts can be reduced by associating the sequence in which canals are added to characteristics of the links, except for the case when all 11 canals are implemented simultaneously (at which point the sequence of canal addition is inconsequential). By identifying the fundamental relationship between the geometry of riverine networks and freshwater fish biodiversity, our results will aid in assessing impacts of IBWT projects and balancing ecosystem and societal demands for freshwater, even in cases where biodiversity data are limited

    Speciation with gene flow in a narrow endemic West Virginia cave salamander (\u3ci\u3eGyrinophilus subterraneus\u3c/i\u3e)

    Get PDF
    Due to their limited geographic distributions and specialized ecologies, cave species are often highly endemic and can be especially vulnerable to habitat degradation within and surrounding the cave systems they inhabit. We investigated the evolutionary history of the West Virginia Spring Salamander (Gyrinophilus subterraneus), estimated the population trend from historic and current survey data, and assessed the current potential for water quality threats to the cave habitat. Our genomic data (mtDNA sequence and ddRADseq-derived SNPs) reveal two, distinct evolutionary lineages within General Davis Cave corresponding to G. subterraneus and its widely distributed sister species, Gyrinophilus porphyriticus, that are also differentiable based on morphological traits. Genomic models of evolutionary history strongly support asymmetric and continuous gene flow between the two lineages, and hybrid classification analyses identify only parental and first generation cross (F1) progeny. Collectively, these results point to a rare case of sympatric speciation occurring within the cave, leading to strong support for continuing to recognize G. subterraneus as a distinct and unique species. Due to its specialized habitat requirements, the complete distribution of G. subterraneus is unresolved, but using survey data in its type locality (and currently the only known occupied site), we find that the population within General Davis Cave has possibly declined over the last 45 years. Finally, our measures of cave and surface stream water quality did not reveal evidence of water quality impairment and provide important baselines for future monitoring. In addition, our unexpected finding of a hybrid zone and partial reproductive isolation between G. subterraneus and G. porphyriticus warrants further attention to better understand the evolutionary and conservation implications of occasional hybridization between the species

    Using decision analysis to support proactive management of emerging infectious wildlife diseases

    Full text link
    Despite calls for improved responses to emerging infectious diseases in wildlife, management is seldom considered until a disease has been detected in affected populations. Reactive approaches may limit the potential for control and increase total response costs. An alternative, proactive management framework can identify immediate actions that reduce future impacts even before a disease is detected, and plan subsequent actions that are conditional on disease emergence. We identify four main obstacles to developing proactive management strategies for the newly discovered salamander pathogen Batrachochytrium salamandrivorans (Bsal). Given that uncertainty is a hallmark of wildlife disease management and that associated decisions are often complicated by multiple competing objectives, we advocate using decision analysis to create and evaluate trade-offs between proactive (pre-emergence) and reactive (post-emergence) management options. Policy makers and natural resource agency personnel can apply principles from decision analysis to improve strategies for countering emerging infectious diseases

    Quantitative Evidence for the Effects of Multiple Drivers on Continental-Scale Amphibian Declines

    Get PDF
    Since amphibian declines were first proposed as a global phenomenon over a quarter century ago, the conservation community has made little progress in halting or reversing these trends. The early search for a “smoking gun” was replaced with the expectation that declines are caused by multiple drivers. While field observations and experiments have identified factors leading to increased local extinction risk, evidence for effects of these drivers is lacking at large spatial scales. Here, we use observations of 389 time-series of 83 species and complexes from 61 study areas across North America to test the effects of 4 of the major hypothesized drivers of declines. While we find that local amphibian populations are being lost from metapopulations at an average rate of 3.79% per year, these declines are not related to any particular threat at the continental scale; likewise the effect of each stressor is variable at regional scales. This result - that exposure to threats varies spatially, and populations vary in their response - provides little generality in the development of conservation strategies. Greater emphasis on local solutions to this globally shared phenomenon is needed

    Quantitative Evidence for the Effects of Multiple Drivers on Continental-Scale Amphibian Declines

    Get PDF
    Since amphibian declines were first proposed as a global phenomenon over a quarter century ago, the conservation community has made little progress in halting or reversing these trends. The early search for a “smoking gun” was replaced with the expectation that declines are caused by multiple drivers. While field observations and experiments have identified factors leading to increased local extinction risk, evidence for effects of these drivers is lacking at large spatial scales. Here, we use observations of 389 time-series of 83 species and complexes from 61 study areas across North America to test the effects of 4 of the major hypothesized drivers of declines. While we find that local amphibian populations are being lost from metapopulations at an average rate of 3.79% per year, these declines are not related to any particular threat at the continental scale; likewise the effect of each stressor is variable at regional scales. This result - that exposure to threats varies spatially, and populations vary in their response - provides little generality in the development of conservation strategies. Greater emphasis on local solutions to this globally shared phenomenon is needed

    Using decision analysis to support proactive management of emerging infectious wildlife diseases

    Get PDF
    Despite calls for improved responses to emerging infectious diseases in wildlife, management is seldom considered until a disease has been detected in affected populations. Reactive approaches may limit the potential for control and increase total response costs. An alternative, proactive management framework can identify immediate actions that reduce future impacts even before a disease is detected, and plan subsequent actions that are conditional on disease emergence. We identify four main obstacles to developing proactive management strategies for the newly discovered salamander pathogen Batrachochytrium salamandrivorans (Bsal). Given that uncertainty is a hallmark of wildlife disease management and that associated decisions are often complicated by multiple competing objectives, we advocate using decision analysis to create and evaluate trade-offs between proactive (pre-emergence) and reactive (post-emergence) management options. Policy makers and natural resource agency personnel can apply principles from decision analysis to improve strategies for countering emerging infectious diseases

    Preparing for a Bsal invasion into North America has improved multi-sector readiness

    Get PDF
    Western palearctic salamander susceptibility to the skin disease caused by the amphibian chytrid fungus Batrachochytrium salamandrivorans (Bsal) was recognized in 2014, eliciting concerns for a potential novel wave of amphibian declines following the B. dendrobatidis (Bd) chytridiomycosis global pandemic. Although Bsal had not been detected in North America, initial experimental trials supported the heightened susceptibility of caudate amphibians to Bsal chytridiomycosis, recognizing the critical threat this pathogen poses to the North American salamander biodiversity hotspot. Here, we take stock of 10 years of research, collaboration, engagement, and outreach by the North American Bsal Task Force. We summarize main knowledge and conservation actions to both forestall and respond to Bsal invasion into North America. We address the questions: what have we learned; what are current challenges; and are we ready for a more effective reaction to Bsal’s eventual detection? We expect that the many contributions to preemptive planning accrued over the past decade will pay dividends in amphibian conservation effectiveness and can inform future responses to other novel wildlife diseases and extreme threats

    The K2-138 system:a near-resonant chain of five sub-neptune planets discovered by citizen scientists

    Get PDF
    K2-138 is a moderately bright (V = 12.2, K = 10.3) main-sequence K star observed in Campaign 12 of the NASA K2 mission. It hosts five small (1.6–3.3 R⊕{R}_{\oplus }) transiting planets in a compact architecture. The periods of the five planets are 2.35, 3.56, 5.40, 8.26, and 12.76 days, forming an unbroken chain of near 3:2 resonances. Although we do not detect the predicted 2–5 minute transit timing variations (TTVs) with the K2 timing precision, they may be observable by higher-cadence observations with, for example, Spitzer or CHEOPS. The planets are amenable to mass measurement by precision radial velocity measurements, and therefore K2-138 could represent a new benchmark system for comparing radial velocity and TTV masses. K2-138 is the first exoplanet discovery by citizen scientists participating in the Exoplanet Explorers project on the Zooniverse platform
    • …
    corecore