16 research outputs found

    Measurement of K*(892)(+/-) production in inelastic pp collisions at the LHC

    Get PDF
    The first results on K⁎(892)± resonance production in inelastic pp collisions at LHC energies of s=5.02, 8, and 13 TeV are presented. The K⁎(892)± has been reconstructed via its hadronic decay channel K⁎(892)→±KS0+π± with the ALICE detector. Measurements of transverse momentum distributions, pT-integrated yields, and mean transverse momenta for charged K⁎(892) are found to be consistent with previous ALICE measurements for neutral K⁎(892) within uncertainties. For pT>1 GeV/c the K⁎(892)± transverse momentum spectra become harder with increasing centre-of-mass energy from 5.02 to 13 TeV, similar to what previously observed for charged kaons and pions. For pT<1 GeV/c the K⁎(892)± yield does not evolve significantly and the abundance of K⁎(892)± relative to K is rather independent of the collision energy. The transverse momentum spectra, measured for K⁎(892)± at midrapidity in the interval 0 < pT<15 GeV/c, are not well described by predictions of different versions of PYTHIA 6, PYTHIA 8 and EPOS-LHC event generators. These generators reproduce the measured pT-integrated K⁎±/K ratios and describe well the momentum dependence for pT<2 GeV/c

    KS0KS0 and KS0K± femtoscopy in pp collisions at √s=5.02 and 13 TeV

    No full text
    Femtoscopic correlations with the particle pair combinations K0 SK0 S and K0 SK± are studied in pp collisions at √s = 5.02 and 13 TeV by the ALICE experiment. At both energies, boson source parameters are extracted for both pair combinations, by fitting models based on Gaussian size distributions of the sources, to the measured two-particle correlation functions. The interaction model used for the K0 SK0 S analysis includes quantum statistics and strong final-state interactions through the f0(980) and a0(980) resonances. The model used for the K0 SK± analysis includes only the final-state interaction through the a0 resonance. Source parameters extracted in the present work are compared with published values from pp collisions at √s = 7 TeV and the different pair combinations are found to be consistent. From the observation that the strength of the K0 SK0 S correlations is significantly greater than the strength of the K0 SK± correlations, the new results are compatible with the a0 resonance being a tetraquark state of the form (q1, q2, s, s), where q1 and q2 are u or d quarks

    Transverse-momentum and event-shape dependence of D-meson flow harmonics in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    The elliptic and triangular flow coefficients v2 and v3 of prompt D0, D+, and D∗+ mesons were measured at midrapidity (|y| < 0.8) in Pb–Pb collisions at the centre-of-mass energy per nucleon pair of √sNN = 5.02 TeV with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decays in the transverse momentum interval 1 < pT < 36 GeV/c in central (0–10%) and semi-central (30–50%) collisions. Compared to pions, protons, and J/ψ mesons, the average D-meson vn harmonics are compatible within uncertainties with a mass hierarchy for pT 3 GeV/c, and are similar to those of charged pions for higher pT. The coupling of the charm quark to the light quarks in the underlying medium is further investigated with the application of the event-shape engineering (ESE) technique to the D-meson v2 and pT-differential yields. The D-meson v2 is correlated with average bulk elliptic flow in both central and semi-central collisions. Within the current precision, the ratios of per-event Dmeson yields in the ESE-selected and unbiased samples are found to be compatible with unity. All the measurements are found to be reasonably well described by theoretical calculations including the effects of charm-quark transport and the recombination of charm quarks with light quarks in a hydrodynamically expanding medium

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    The direct measurement of the QCD dead cone in charm quark fragmentation is reported, using iterative declustering of jets tagged with a fully reconstructed charmed hadron

    Multiplicity dependence of inclusive J/ψ production at midrapidity in pp collisions at √s=13 TeV

    No full text
    Measurements of the inclusive J/ψ yield as a function of charged-particle pseudorapidity density dNch/dη in pp collisions at √s = 13 TeV with ALICE at the LHC are reported. The J/ψ meson yield is measured at midrapidity (|y| < 0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (|η| < 1) and at forward rapidity (−3.7 < η < −1.7 and 2.8 < η < 5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/ψ yield with normalized dNch/dη is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively

    Direct observation of the dead-cone effect in quantum chromodynamics

    No full text
    At particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD) [1]. The vacuum is not transparent to the partons and induces gluon radiation and quark pair production in a process that can be described as a parton shower [2]. Studying the pattern of the parton shower is one of the key experimental tools in understanding the properties of QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass m and energy E, within a cone of angular size m/E around the emitter [3]. A direct observation of the dead-cone effect in QCD has not been possible until now, due to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible bound hadronic states. Here we show the first direct observation of the QCD dead-cone by using new iterative declustering techniques [4, 5] to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD, which is derived more generally from its origin as a gauge quantum field theory. Furthermore, the measurement of a dead-cone angle constitutes the first direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.The direct measurement of the QCD dead cone in charm quark fragmentation is reported, using iterative declustering of jets tagged with a fully reconstructed charmed hadron.In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD). These partons subsequently emit further partons in a process that can be described as a parton shower which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass mQm_{\rm{Q}} and energy EE, within a cone of angular size mQm_{\rm{Q}}/EE around the emitter. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics

    Σ(1385)± resonance production in Pb–Pb collisions at √sNN = 5.02 TeV

    No full text
    Hadronic resonances are used to probe the hadron gas produced in the late stage of heavy-ion collisions since they decay on the same timescale, of the order of 1 to 10 fm/c, as the decoupling time of the system. In the hadron gas, (pseudo)elastic scatterings among the products of resonances that decayed before the kinetic freeze-out and regeneration processes counteract each other, the net effect depending on the resonance lifetime, the duration of the hadronic phase, and the hadronic cross sections at play. In this context, the Σ(1385)± particle is of particular interest as models predict that regeneration dominates over rescattering despite its relatively short lifetime of about 5.5 fm/c. The first measurement of the Σ(1385)± resonance production at midrapidity in Pb-Pb collisions at sNN−−−√=5.02 TeV with the ALICE detector is presented in this Letter. The resonances are reconstructed via their hadronic decay channel, Λπ, as a function of the transverse momentum (pT) and the collision centrality. The results are discussed in comparison with the measured yield of pions and with expectations from the statistical hadronization model as well as commonly employed event generators, including PYTHIA8/Angantyr and EPOS3 coupled to the UrQMD hadronic cascade afterburner. None of the models can describe the data. For Σ(1385)±, a similar behaviour as K∗(892)0 is observed in data unlike the predictions of EPOS3 with afterburner
    corecore