56 research outputs found

    Papillorenal Syndrome-Causing Missense Mutations in PAX2/Pax2 Result in Hypomorphic Alleles in Mouse and Human

    Get PDF
    Papillorenal syndrome (PRS, also known as renal-coloboma syndrome) is an autosomal dominant disease characterized by potentially-blinding congenital optic nerve excavation and congenital kidney abnormalities. Many patients with PRS have mutations in the paired box transcription factor gene, PAX2. Although most mutations in PAX2 are predicted to result in complete loss of one allele's function, three missense mutations have been reported, raising the possibility that more subtle alterations in PAX2 function may be disease-causing. To date, the molecular behaviors of these mutations have not been explored. We describe a novel mouse model of PRS due to a missense mutation in a highly-conserved threonine residue in the paired domain of Pax2 (p.T74A) that recapitulates the ocular and kidney findings of patients. This mutation is in the Pax2 paired domain at the same location as two human missense mutations. We show that all three missense mutations disrupt potentially critical hydrogen bonds in atomic models and result in reduced Pax2 transactivation, but do not affect nuclear localization, steady state mRNA levels, or the ability of Pax2 to bind its DNA consensus sequence. Moreover, these mutations show reduced steady-state levels of Pax2 protein in vitro and (for p.T74A) in vivo, likely by reducing protein stability. These results suggest that hypomorphic alleles of PAX2/Pax2 can lead to significant disease in humans and mice

    Maintenance of respiratory chain function in mouse hearts with severely impaired mtDNA transcription

    Get PDF
    The basal mitochondrial transcription machinery is essential for biogenesis of the respiratory chain and consists of mitochondrial RNA polymerase, mitochondrial transcription factor A (TFAM) and mitochondrial transcription factor B2. This triad of proteins is sufficient and necessary for mtDNA transcription initiation. Abolished mtDNA transcription caused by tissue-specific knockout of TFAM in the mouse heart leads to early onset of a severe mitochondrial cardiomyopathy with lethality within the first post-natal weeks. Here, we describe a mouse model expressing human TFAM instead of the endogenous mouse TFAM in heart. These rescue mice have severe reduction in mtDNA transcription initiation, but, surprisingly, are healthy at the age of 52 weeks with near-normal steady-state levels of transcripts. In addition, we demonstrate that heavy-strand mtDNA transcription normally terminates at the termination-associated sequence in the control region. This termination is abolished in rescue animals resulting in heavy (H)-strand transcription of the entire control region. In conclusion, we demonstrate here the existence of an unexpected mtDNA transcript stabilization mechanism that almost completely compensates for the severely reduced transcription initiation in rescue hearts. Future elucidation of the underlying molecular mechanism may provide a novel pathway to treat mitochondrial dysfunction in human pathology

    Long-term 12 year follow-up of X-linked congenital retinoschisis.

    No full text
    Purpose: To investigate the retinal structure and function during the progression of X-linked retinoschisis (XLRS) from childhood to adulthood. Methods: Ten patients clinically diagnosed with XLRS were investigated at 6-15 years of age (mean age 9 years) with a follow-up 8 to 14 years later (mean 12 years). The patients underwent regular ophthalmic examination as well as testing of best corrected visual acuity (BCVA), visual field (VF) and assessment of full-field electroretinography (ERG) during their first visit. During the follow-up, the same clinical protocols were repeated. In addition, macular structure and function was examined with multifocal electroretinography (mfERG) and optical coherence tomography (OCT). The patients were 18-25 years of age (mean age 21 years) at the follow-up examination. All exons and exon-intron boundaries of RS1-gene were sequenced for gene mutations in 9 out of the 10 patients. Results: Best corrected VA and VF were stable during this follow-up period. No significant progression in cone or rod function could be measured by full-field ERG. Multifocal electroretinography and OCT demonstrated a wide heterogeneity of macular changes in retinal structure and function at the time of follow-up visit. Three different mutations were detected in these nine patients, including a known nonsense mutation in exon 3, a novel insertion in exon 5 and an intronic mutation at 5' splice site of intron 3. Conclusions: Clinical follow-up (mean 12 years) of ten young XLRS patients (mean age of 9 years) with a typical congenital retinoschisis phenotype revealed no significant decline in retinal function during this time period. MfERG and OCT demonstrated a wide variety of macular changes including structure and dysfunction. The XLRS disease was relatively stable during this period of observation and would afford opportunity for therapy studies to judge benefit against baseline and against the fellow eye
    • 

    corecore