3,671 research outputs found
Virulence-associated genes in Avian Pathogenic Escherichia coli of turkey
50 Escherichia coli (APEC-Avian Pathogenic Escherichia coli) strains and 15 E. coli (AFEC-Avian Faecal Escherichia coli) from turkeys affected by colibacillosis and from healthy turkeys were tested for the presence of eight different virulence-associated genes. Besides, APEC were serotyped. O78 has been the most detected serotyped. The presence of the tested virulence genes was prevalently related to the APEC isolates. With reference to serogroup, all the tested O78 resulted iss and irp2 positive. Besides, tsh e cva/cvi were respectively present in 88.9 and 83.3% of O78. Nevertheless, the finding of a not typeable strains equipped with all the eight tested virulence genes among the APEC isolates suggest the importance of a careful and complete characterisation of the isolate to evaluate the real potential pathogenic attitude of the bacterium
Three Dimensional Distorted Black Holes
We present three-dimensional, {\it non-axisymmetric} distorted black hole
initial data which generalizes the axisymmetric, distorted, non-rotating
[Bernstein93a] and rotating [Brandt94a] single black hole data developed by
Bernstein, Brandt, and Seidel. These initial data should be useful for studying
the dynamics of fully 3D, distorted black holes, such as those created by the
spiraling coalescence of two black holes. We describe the mathematical
construction of several families of such data sets, and show how to construct
numerical solutions. We survey quantities associated with the numerically
constructed solutions, such as ADM masses, apparent horizons, measurements of
the horizon distortion, and the maximum possible radiation loss ().Comment: 23 pages, 12 figures, accepted for publication in Classical and
Quantum Gravit
Symmetry without Symmetry: Numerical Simulation of Axisymmetric Systems using Cartesian Grids
We present a new technique for the numerical simulation of axisymmetric
systems. This technique avoids the coordinate singularities which often arise
when cylindrical or polar-spherical coordinate finite difference grids are
used, particularly in simulating tensor partial differential equations like
those of 3+1 numerical relativity. For a system axisymmetric about the z axis,
the basic idea is to use a 3-dimensional Cartesian (x,y,z) coordinate grid
which covers (say) the y=0 plane, but is only one
finite-difference-molecule--width thick in the y direction. The field variables
in the central y=0 grid plane can be updated using normal (x,y,z)--coordinate
finite differencing, while those in the y \neq 0 grid planes can be computed
from those in the central plane by using the axisymmetry assumption and
interpolation. We demonstrate the effectiveness of the approach on a set of
fully nonlinear test computations in 3+1 numerical general relativity,
involving both black holes and collapsing gravitational waves.Comment: 17 pages, 4 figure
Avian Pathogenic Escherichia coli in Audouin gulls (Larus audouinii) Could they affect the surviving of the bird colonies
A total of 39 E. coli strains isolated from cloacal swabs and unhatched eggs of Audouin's gulls (Larus audouinii) living the Salento coast (Italy) were serotyped and molecular characterized for the presence of irp2, fyuA, tsh, papC, fimC, iucD, and eae genes described for Avian Pathogenic E. coli (APEC). Eight different serogroups (O1, 06, 08, 015, 075, 0139, 0146, 0147) were distinguished: we recorded a very high rate of untypeable strains. Genotyping by PCR achieved to detect fimC and irp2, described for APEC strains, as most predominant genes circulating in the gulls population, accounting for 94.87% and 97.43% respectively. Nevertheless, a significant co-existance of virulence genes was demonstrated to belong to E.coli of eggs origin. Particularly, fimC/tsh/iucD pathotype, recognized as most responsible of illness in poultry, emerged in 8.69% of E. coli of eggs origin
Occurrence of pathogenic and faecal Escherichia coli in layer hens
A total of 117 Escherichia coli from colibacillosis affected (APEC) and clinically healthy birds (AFEC) were serotyped and tested for the presence of virulence genes: iss, tsh, cva. A total of 54.5% E. Coli were typeable and 15 different serogroups were identified. The most common serogroups among APEC strains were O78, O2 and O128, whereas O139 was predominant in faecal strains from healthy birds. Iss, tsh e cva were more frequently detected among the septicaemic E. coli strains. The association of virulence genes was observed. Particularly, the pathotype iss-tsh-cva was present in 46.5% of APEC strains. Referring to serogroups, E. coli O78 and O2 originating from colibacillosis affected birds were always isstsh- cva positive but did not share virulence genes when they came from healthy birds
Efficacy of λ-cyhalothrin, amitraz, and phoxim against the poultry red mite Dermanyssus gallinae De Geer, 1778 (Mesostigmata: Dermanyssidae): an eight-year survey
Dermanyssus gallinae (De Geer, 1778) is a major problem for the poultry industry worldwide, as it negatively affects virtually all kinds of rearing systems. Therefore, the control of infestation has become a routine process, and its economic cost is constantly increasing. Until now, most of the control strategies have relied on the use of synthetic chemical drugs, but their efficacy is often questioned by the emergence and diffusion of resistant mite populations. With this in mind, the efficacy of λ-cyhalothrin, amitraz, and phoxim has been verified by testing them against 86 mite populations collected from the same number of poultry farms in Italy from 2008 to 2015. Assays were performed according to the filter paper method using the recommended, half, quarter, double and quadruple doses. The results showed that phoxim and amitraz were the most effective acaricides (median efficacies 80.35% and 80.83%, respectively), but amitraz exhibited a sharp fall in its efficacy during 2011 and 2012, while phoxim maintained its high effectiveness up to 2015, when it dropped. The overall median efficacy of λ-cyhalothrin was 58.33%. The data also highlighted the importance of the use of the right concentration, as an increase in dosage was not always useful against resistant populations, while its reduction also diminished efficacy, simultaneously increasing the risk for the development of resistance
On the Shear Instability in Relativistic Neutron Stars
We present new results on instabilities in rapidly and differentially
rotating neutron stars. We model the stars in full general relativity and
describe the stellar matter adopting a cold realistic equation of state based
on the unified SLy prescription. We provide evidence that rapidly and
differentially rotating stars that are below the expected threshold for the
dynamical bar-mode instability, beta_c = T/|W| ~ 0.25, do nevertheless develop
a shear instability on a dynamical timescale and for a wide range of values of
beta. This class of instability, which has so far been found only for small
values of beta and with very small growth rates, is therefore more generic than
previously found and potentially more effective in producing strong sources of
gravitational waves. Overall, our findings support the phenomenological
predictions made by Watts, Andersson and Jones on the nature of the low-T/|W|.Comment: 20 pages; accepted to the Classical and Quantum Gravity special issue
for MICRA200
Finding Apparent Horizons in Dynamic 3D Numerical Spacetimes
We have developed a general method for finding apparent horizons in 3D
numerical relativity. Instead of solving for the partial differential equation
describing the location of the apparent horizons, we expand the closed 2D
surfaces in terms of symmetric trace--free tensors and solve for the expansion
coefficients using a minimization procedure. Our method is applied to a number
of different spacetimes, including numerically constructed spacetimes
containing highly distorted axisymmetric black holes in spherical coordinates,
and 3D rotating, and colliding black holes in Cartesian coordinates.Comment: 19 pages, 13 figures, LaTex, to appear in Phys. Rev. D. Minor changes
mad
Initial data for Einstein's equations with superposed gravitational waves
A method is presented to construct initial data for Einstein's equations as a
superposition of a gravitational wave perturbation on an arbitrary stationary
background spacetime. The method combines the conformal thin sandwich formalism
with linear gravitational waves, and allows detailed control over
characteristics of the superposed gravitational wave like shape, location and
propagation direction. It is furthermore fully covariant with respect to
spatial coordinate changes and allows for very large amplitude of the
gravitational wave.Comment: Version accepted by PRD; added convergence plots, expanded
discussion. 9 pages, 9 figure
Statistics of electromagnetic transitions as a signature of chaos in many-electron atoms
Using a configuration interaction approach we study statistics of the dipole
matrix elements (E1 amplitudes) between the 14 lower odd states with J=4 and
21st to 100th even states with J=4 in the Ce atom (1120 lines). We show that
the distribution of the matrix elements is close to Gaussian, although the
width of the Gaussian distribution, i.e. the root-mean-square matrix element,
changes with the excitation energy. The corresponding line strengths are
distributed according to the Porter-Thomas law which describes statistics of
transition strengths between chaotic states in compound nuclei. We also show
how to use a statistical theory to calculate mean squared values of the matrix
elements or transition amplitudes between chaotic many-body states. We draw
some support for our conclusions from the analysis of the 228 experimental line
strengths in Ce [J. Opt. Soc. Am. v. 8, p. 1545 (1991)], although direct
comparison with the calculations is impeded by incompleteness of the
experimental data. Nevertheless, the statistics observed evidence that highly
excited many-electron states in atoms are indeed chaotic.Comment: 16 pages, REVTEX, 4 PostScript figures (submitted to Phys Rev A
- …