2,991 research outputs found

    Qualitative Supervision of Naval Diesel Engine Turbocharger Systems

    Get PDF
    FAC Intelligent Components and Instruments for Control Applications, Malaga, Spain, 1992This paper presents a qualitative model the diesel engine turbocharger system of a ship. The paper also shows how qualitative models can be use for an intelligent monitoring of the process concerned

    Fuzzy Predictive Controller for Mobile Robot Path Tracking

    Get PDF
    IFAC Intelligent Components and Instruments for Control Applications, Annecy, France 1997This paper presents a way of implementing a Model Based Predictive Controller (MBPC) for mobile robot path-tracking. The method uses a non-linear model of mobile robot dynamics and thus allows an accurate prediction of the future trajectories. Constraints on the maximum attainable angular velocity is also considered by the algorithm. A fuzzy approach is used to implement the MBPC. The fuzzy controller has been trained using a lookup-table scheme, where the database of fuzzy-rules has been obtained automatically from a set of input-output training patterns, computed with the predictive controller. Experimental results obtained when applying the fuzzy controller to a TRC labmate mobile platform are given in the paper.Ministerio de Ciencia y Tecnología TAP95-0307Ministerio de Ciencia y Tecnología TAP96-884C

    Trajectory Planning for Spacecraft Rendezvous in Elliptical Orbits with On / Off Thrusters

    Get PDF
    The 19th World Congress of the International Federation of Automatic Control 2014 Cape Town, SudáfricaIn a previous work, the authors developed a trajectory planning algorithm for spacecraft rendezvous which computed optimal Pulse-Width Modulated (PWM) control signals, assuming that the target was moving in a circular Keplerian orbit. In this paper we extend the algorithm to the case of an elliptical target orbit with arbitrary eccentricity. Since the orbit is elliptical, the linear time-varying Tschauner-Hempel model is used, whose exact solution is possible by using true (or eccentric) anomaly instead of time (which is directly related to both via Kepler's equation). Unlike in the circular case, computing the PWM solution itself requires numerical integration. However, explicit linearization around the computed solution turns out to be possible and is exploited for rapidly improving the solution using linear programming (LP) techniques. The algorithm is initialized by solving the impulsive problem first; the impulses are converted to PWM signals, which are used as an initial guess. Using the explicit linearization and LP, the solution is refined until a (possibly local) optimal value is reached. The efficacy of the method is shown in a simulation study where it is compared to the impulsive-only approach

    Model Predictive Control for Spacecraft Rendezvous in Elliptical Orbits with On/Off Thrusters

    Get PDF
    IFAC Workshop on Advanced Control and Navigation for Autonomous Aerospace Vehicles. 08/06/2015. SevillaIn previous works, the authors have developed a trajectory planning algorithm for spacecraft rendezvous which computed optimal Pulse-Width Modulated (PWM) control signals, for circular and eccentric Keplerian orbits. The algorithm is initialized by solving the impulsive problem first and then, using explicit linearization and linear programming, the solution is refined until a (possibly local) optimal value is reached. However, trajectory planning cannot take into account orbital perturbations, disturbances or model errors. To overcome these issues, in this paper we develop a Model Predictive Control (MPC) algorithm based on the open-loop PWM planner and test it for elliptical target orbits with arbitrary eccentricity (using the linear time-varying Tschauner-Hempel model). The MPC is initialized by first solving the open-loop problem with the PWM trajectory planning algorithm. After that, at each time step, our MPC saves time recomputing the trajectory by applying the iterative linearization scheme of the trajectory planning algorithm to the solution obtained in the previous time step. The efficacy of the method is shown in a simulation study where it is compared to MPC computed used an impulsive-only approach

    Trajectory Planning for Spacecraft Rendezvous with On / Off Thrusters

    Get PDF
    18th World CongressThe International Federation of Automatic ControlMilano (Italy) August 28 - September 2The objective of this work is to present a trajectory planning algorithm for spacecraft rendezvous that is able to incorporate Pulse-Width Modulated (PWM) control signals. The algorithm is based on linearization around a previously computed solution. To initialize the algorithm, a first solution needs to be obtained. To do so, the trajectory planning problem is solved using Pulse-Amplitude Modulated (PAM) control signals; these are then converted to PWM signals, which are used as an initial guess. Iterating, the solution is refined until an optimal value is reached. Simulations show that this method converges after a few iterations. The algorithm is simple and fast, hence it could be implemented online or used together with a Model Predictive Controller

    Robust Model Predictive Control for Spacecraft Rendezvous with Online Prediction of Disturbance Bounds

    Get PDF
    IFAC Workshop Aerospace Guidance, Navigation and Flight Control Systems (AGNFCS' 09) Samara, RUSSIA June 30 - July 2, 2009A Model Predictive Controller is introduced to solve the problem of rendezvous of spacecraft, using the HCW model and including additive disturbances and line-of-sight constraints. It is shown that a standard MPC is not able to cope with disturbances. Then a robust Model Predictive Control that introduces the concepts of robust satisfaction of constraints is proposed. The formulation also includes a predictor of the disturbance properties which are needed in the robust algorithm. In simulations it is shown that the robust MPC scheme is able to handle not only additive disturbances (which are the ones used in the formulation) but also large multiplicative disturbances and unmodelled dynamics (due to eccentricity of the orbit of the target spacecraft)

    Pulse-width predictive control for LTV systems with application to spacecraft rendezvous

    Get PDF
    This work presents a Model Predictive Controller (MPC) that is able to handle Linear Time-Varying (LTV) plants with Pulse-Width Modulated (PWM) control. The MPC is based on a planner that employs a Pulse-Amplitude Modulated (PAM) or impulsive approximation as a hot-start and then uses explicit linearization around successive PWM solutions for rapidly improving the solution by means of quadratic programming. As an example, the problem of rendezvous of spacecraft for eccentric target orbits is considered. The problem is modeled by the LTV Tschauner–Hempel equations, whose state transition matrix is explicit; this is exploited by the algorithm for rapid convergence. The efficacy of the method is shown in a simulation study.Ministerio de Economía y Competitividad DPI2008–05818Ministerio de Economía y Competitividad MTM2015-65608-

    Contextual Information Retrieval based on Algorithmic Information Theory and Statistical Outlier Detection

    Full text link
    The main contribution of this paper is to design an Information Retrieval (IR) technique based on Algorithmic Information Theory (using the Normalized Compression Distance- NCD), statistical techniques (outliers), and novel organization of data base structure. The paper shows how they can be integrated to retrieve information from generic databases using long (text-based) queries. Two important problems are analyzed in the paper. On the one hand, how to detect "false positives" when the distance among the documents is very low and there is actual similarity. On the other hand, we propose a way to structure a document database which similarities distance estimation depends on the length of the selected text. Finally, the experimental evaluations that have been carried out to study previous problems are shown.Comment: Submitted to 2008 IEEE Information Theory Workshop (6 pages, 6 figures

    An application in the hotel sector

    Get PDF
    This article deals with the study of Corporate Responsibility (CR) under the European Customer Satisfaction Index (ECSI). The methodology of this empirical study, conducted among 629 customers staying at hotels in the city of Seville, is based on structural equation modeling (PLS). The results obtained demonstrate the applicability of the European model to the hotel sector, although not all the relationships from the original model have been proven. The main contributions are derived from a better understanding of the model's components, a variable not studied before having been incorporated: the importance of Corporate Responsibility (CR). Moreover, it means to contribute to the field of research on CR as, despite the growing interest in the subject, the effects of this construct are still poorly understood
    corecore