15 research outputs found

    Construction status and prospects of the Hyper-Kamiokande project

    Get PDF
    The Hyper-Kamiokande project is a 258-kton Water Cherenkov together with a 1.3-MW high-intensity neutrino beam from the Japan Proton Accelerator Research Complex (J-PARC). The inner detector with 186-kton fiducial volume is viewed by 20-inch photomultiplier tubes (PMTs) and multi-PMT modules, and thereby provides state-of-the-art of Cherenkov ring reconstruction with thresholds in the range of few MeVs. The project is expected to lead to precision neutrino oscillation studies, especially neutrino CP violation, nucleon decay searches, and low energy neutrino astronomy. In 2020, the project was officially approved and construction of the far detector was started at Kamioka. In 2021, the excavation of the access tunnel and initial mass production of the newly developed 20-inch PMTs was also started. In this paper, we present a basic overview of the project and the latest updates on the construction status of the project, which is expected to commence operation in 2027

    Prospects for neutrino astrophysics with Hyper-Kamiokande

    Get PDF
    Hyper-Kamiokande is a multi-purpose next generation neutrino experiment. The detector is a two-layered cylindrical shape ultra-pure water tank, with its height of 64 m and diameter of 71 m. The inner detector will be surrounded by tens of thousands of twenty-inch photosensors and multi-PMT modules to detect water Cherenkov radiation due to the charged particles and provide our fiducial volume of 188 kt. This detection technique is established by Kamiokande and Super-Kamiokande. As the successor of these experiments, Hyper-K will be located deep underground, 600 m below Mt. Tochibora at Kamioka in Japan to reduce cosmic-ray backgrounds. Besides our physics program with accelerator neutrino, atmospheric neutrino and proton decay, neutrino astrophysics is an important research topic for Hyper-K. With its fruitful physics research programs, Hyper-K will play a critical role in the next neutrino physics frontier. It will also provide important information via astrophysical neutrino measurements, i.e., solar neutrino, supernova burst neutrinos and supernova relic neutrino. Here, we will discuss the physics potential of Hyper-K neutrino astrophysics

    Enhanced light signal as a powerful method to mitigate random coincidence background in double beta decay search with Mo-containing scintillating bolometers

    No full text
    International audienceRandom coincidences of events could be one of the main sources of background in the search for neutrino-less double-beta decay of 100^{100}Mo with macro-bolometers, due to their modest time resolution. Scintillating bolometers as those based on Li2_2MoO4_4 crystals and employed in the CROSS and CUPID experiments can eventually exploit the coincident fast signal detected in a light detector to reduce this background. However, the scintillation provides a modest signal-to-noise ratio, making difficult a pile-up pulse-shape recognition and rejection at timescales shorter than a few ms. Neganov-Trofimov-Luke assisted light detectors (NTL-LDs) offer the possibility to effectively increase the signal-to-noise ratio, preserving a fast time-response, and enhance the capability of pile-up rejection via pulse shape analysis. In this article we present: a) an experimental work performed with a Li2_2MoO4_4 scintillating bolometer, studied in the framework of the CROSS experiment, and utilizing a NTL-LD; b) a simulation method to reproduce, synthetically, randomly coincident two-neutrino double-beta decay events; c) a new analysis method based on a pulse-shape discrimination algorithm capable of providing high pile-up rejection efficiencies. We finally show how the NTL-LDs offer a balanced solution between performance and complexity to reach background index \sim10410^{-4} counts/keV/kg/year with 280~g Li2_2MoO4_4 (100^{100}Mo enriched) bolometers at 3034 keV, the Q-value of the double-beta decay, and target the goal of a next generation experiment like CUPID

    Phonon-mediated crystal detectors with metallic film coating capable of rejecting α and β events induced by surface radioactivity

    Get PDF
    International audiencePhonon-mediated particle detectors based on single crystals and operated at millikelvin temperatures are used in rare-event experiments for neutrino physics and dark-matter searches. In general, these devices are not sensitive to the particle impact point, especially if the detection is mediated by thermal phonons. In this Letter, we demonstrate that excellent discrimination between interior and surface β and α events can be achieved by coating a crystal face with a thin metallic film, either continuous or in the form of a grid. The coating affects the phonon energy downconversion cascade that follows the particle interaction, leading to a modified signal shape for close-to-film events. An efficient identification of surface events was demonstrated with detectors based on a rectangular 20 × 20 × 10 mm3 Li2MoO4 crystal coated with a Pd normal-metal film (10 nm thick) and with Al–Pd superconductive bi-layers (100 nm-10 nm thick) on a 20 × 20 mm2 face. Discrimination capabilities were tested with 238U sources emitting both α and β particles. Surface events are identified for energy depositions down to millimeter-scale depths from the coated surface. With this technology, a substantial reduction of the background level can be achieved in experiments searching for neutrinoless double-beta decay

    The neutrinoless double beta decay CROSS experiment: demonstrator with surface sensitive bolometers

    No full text
    International audienceThe CROSS experiment is proposing to use a new technology of surface sensitive bolometers for low-background neutrinoless double beta decay searches. Efficient rejection of surface α and β events will allow to reach background in the region of interest below than 104^{−4} cnts/keV/kg/yr. The isotopes of interest, which are 130^{130}Te and 100^{100}Mo, are investigated with TeO2_{2} and Li2_{2}MoO4_{4} bolometers. The surface sensitivity is achieved thanks to the evaporation of thin metallic film on the crystal surface that modifies the pulse shape of near-surface events. An investigation of various pulse shape parameters was performed. The analysis shows that one of the best parameters for discrimination is the integrated area of the raw signal both for TeO2_{2} and Li2_{2}MoO4_{4} with Pd-Al (10 nm - 100 nm) bi-layer

    Li2_2100depl^{100\textrm{depl}}MoO4_4 Scintillating Bolometers for Rare-Event Search Experiments

    No full text
    International audienceWe report on the development of scintillating bolometers based on lithium molybdate crystals containing molybdenum depleted in the double-β\beta active isotope 100^{100}Mo (Li2_2100depl^{100\textrm{depl}}MoO4_4). We used two Li2_2100depl^{100\textrm{depl}}MoO4_4 cubic samples, 45 mm side and 0.28 kg each, produced following purification and crystallization protocols developed for double-β\beta search experiments with 100^{100}Mo-enriched Li2_2MoO4_4 crystals. Bolometric Ge detectors were utilized to register scintillation photons emitted by the Li2_2100depl^{100\textrm{depl}}MoO4_4 crystal scintillators. The measurements were performed in the CROSS cryogenic set-up at the Canfranc underground laboratory (Spain). We observed that the Li2_2100depl^{100\textrm{depl}}MoO4_4 scintillating bolometers are characterized by excellent spectrometric performance (\sim3--6 keV FWHM at 0.24--2.6 MeV γ\gamma's), moderate scintillation signal (\sim0.3--0.6 keV/MeV depending on light collection conditions) and high radiopurity (228^{228}Th and 226^{226}Ra activities are below a few μ\muBq/kg), comparable to the best reported results of low-temperature detectors based on Li2_2MoO4_4 with natural or 100^{100}Mo-enriched molybdenum content. Prospects of Li2_2100depl^{100\textrm{depl}}MoO4_4 bolometers for use in rare-event search experiments are briefly discussed

    Li2_2100depl^{100\textrm{depl}}MoO4_4 Scintillating Bolometers for Rare-Event Search Experiments

    No full text
    International audienceWe report on the development of scintillating bolometers based on lithium molybdate crystals containing molybdenum depleted in the double-β\beta active isotope 100^{100}Mo (Li2_2100depl^{100\textrm{depl}}MoO4_4). We used two Li2_2100depl^{100\textrm{depl}}MoO4_4 cubic samples, 45 mm side and 0.28 kg each, produced following purification and crystallization protocols developed for double-β\beta search experiments with 100^{100}Mo-enriched Li2_2MoO4_4 crystals. Bolometric Ge detectors were utilized to register scintillation photons emitted by the Li2_2100depl^{100\textrm{depl}}MoO4_4 crystal scintillators. The measurements were performed in the CROSS cryogenic set-up at the Canfranc underground laboratory (Spain). We observed that the Li2_2100depl^{100\textrm{depl}}MoO4_4 scintillating bolometers are characterized by excellent spectrometric performance (\sim3--6 keV FWHM at 0.24--2.6 MeV γ\gamma's), moderate scintillation signal (\sim0.3--0.6 keV/MeV depending on light collection conditions) and high radiopurity (228^{228}Th and 226^{226}Ra activities are below a few μ\muBq/kg), comparable to the best reported results of low-temperature detectors based on Li2_2MoO4_4 with natural or 100^{100}Mo-enriched molybdenum content. Prospects of Li2_2100depl^{100\textrm{depl}}MoO4_4 bolometers for use in rare-event search experiments are briefly discussed

    Test of 116^{116}CdWO4_4 and Li2_2MoO4_4 scintillating bolometers in the CROSS underground facility with upgraded detector suspension

    No full text
    International audienceIn preparation to the CROSS 2β2\beta decay experiment, we installed a new detector suspension with magnetic dumping inside a pulse-tube cryostat of a dedicated low-background facility at the LSC (Spain). The suspension was tested with two scintillating bolometers based on large-volume 116CdWO4 (CWO-enr) and Li2MoO4 (LMO) crystals. The former, a reference device, was used for testing new noise conditions and for comparing bolometric performance of an advanced Li2MoO4 crystal developed in the framework of the CLYMENE project, in view of next-generation double-beta decay experiments like CUPID. We cooled down detectors to 15 mK and achieved high performance for all tested devices. In particular both CWO-enr and LMO bolometers demonstrated the energy resolution of 6 keV FWHM for the 2.6 MeV gamma quanta, among the best for thermal detectors based on such compounds. The baseline noise resolution (FWHM) of the CWO-enr detector was improved by 2 keV, compared to the best previous measurement of this detector in the CROSS facility, while the noise of the Ge-based optical bolometer was improved by a factor 2, to 100 eV FWHM. Despite of the evident progress in the improving of noise conditions of the set-up, we see high-frequency harmonics of a pulse-tube induced noise, suggesting a noise pick-up by cabling. Another Ge light detector was assisted with the signal amplification exploiting the Neganov-Trofimov-Luke effect, which allowed to reach 20 eV FWHM noise resolution by applying 60 V electrode bias. Highly-efficient particle identification was achieved with both detectors, despite a low scintillation efficiency of the LMO material. The radiopurity level of the LMO crystal is rather high; only traces of 210Po and 226Ra were detected (0.1 mBq/kg each), while the 228Th activity is expected to be at least an order of magnitude lower, as well as a 40K activity is found to be < 6 mBq/kg

    Test of 116^{116}CdWO4_4 and Li2_2MoO4_4 scintillating bolometers in the CROSS underground facility with upgraded detector suspension

    Get PDF
    International audienceIn preparation to the CROSS 2β2\beta decay experiment, we installed a new detector suspension with magnetic dumping inside a pulse-tube cryostat of a dedicated low-background facility at the LSC (Spain). The suspension was tested with two scintillating bolometers based on large-volume 116CdWO4 (CWO-enr) and Li2MoO4 (LMO) crystals. The former, a reference device, was used for testing new noise conditions and for comparing bolometric performance of an advanced Li2MoO4 crystal developed in the framework of the CLYMENE project, in view of next-generation double-beta decay experiments like CUPID. We cooled down detectors to 15 mK and achieved high performance for all tested devices. In particular both CWO-enr and LMO bolometers demonstrated the energy resolution of 6 keV FWHM for the 2.6 MeV gamma quanta, among the best for thermal detectors based on such compounds. The baseline noise resolution (FWHM) of the CWO-enr detector was improved by 2 keV, compared to the best previous measurement of this detector in the CROSS facility, while the noise of the Ge-based optical bolometer was improved by a factor 2, to 100 eV FWHM. Despite of the evident progress in the improving of noise conditions of the set-up, we see high-frequency harmonics of a pulse-tube induced noise, suggesting a noise pick-up by cabling. Another Ge light detector was assisted with the signal amplification exploiting the Neganov-Trofimov-Luke effect, which allowed to reach 20 eV FWHM noise resolution by applying 60 V electrode bias. Highly-efficient particle identification was achieved with both detectors, despite a low scintillation efficiency of the LMO material. The radiopurity level of the LMO crystal is rather high; only traces of 210Po and 226Ra were detected (0.1 mBq/kg each), while the 228Th activity is expected to be at least an order of magnitude lower, as well as a 40K activity is found to be < 6 mBq/kg

    Test of 116^{116}CdWO4_4 and Li2_2MoO4_4 scintillating bolometers in the CROSS underground facility with upgraded detector suspension

    No full text
    International audienceIn preparation to the CROSS 2β2\beta decay experiment, we installed a new detector suspension with magnetic dumping inside a pulse-tube cryostat of a dedicated low-background facility at the LSC (Spain). The suspension was tested with two scintillating bolometers based on large-volume 116CdWO4 (CWO-enr) and Li2MoO4 (LMO) crystals. The former, a reference device, was used for testing new noise conditions and for comparing bolometric performance of an advanced Li2MoO4 crystal developed in the framework of the CLYMENE project, in view of next-generation double-beta decay experiments like CUPID. We cooled down detectors to 15 mK and achieved high performance for all tested devices. In particular both CWO-enr and LMO bolometers demonstrated the energy resolution of 6 keV FWHM for the 2.6 MeV gamma quanta, among the best for thermal detectors based on such compounds. The baseline noise resolution (FWHM) of the CWO-enr detector was improved by 2 keV, compared to the best previous measurement of this detector in the CROSS facility, while the noise of the Ge-based optical bolometer was improved by a factor 2, to 100 eV FWHM. Despite of the evident progress in the improving of noise conditions of the set-up, we see high-frequency harmonics of a pulse-tube induced noise, suggesting a noise pick-up by cabling. Another Ge light detector was assisted with the signal amplification exploiting the Neganov-Trofimov-Luke effect, which allowed to reach 20 eV FWHM noise resolution by applying 60 V electrode bias. Highly-efficient particle identification was achieved with both detectors, despite a low scintillation efficiency of the LMO material. The radiopurity level of the LMO crystal is rather high; only traces of 210Po and 226Ra were detected (0.1 mBq/kg each), while the 228Th activity is expected to be at least an order of magnitude lower, as well as a 40K activity is found to be < 6 mBq/kg
    corecore