500 research outputs found
In operando XAS investigation of reduction and oxidation processes in cobalt and iron mixed spinels during the chemical loop reforming of ethanol
FeCo2O4 and CoFe2O4 nanoparticles have been studied as oxygen carriers for the Chemical Loop Reforming (CLR) of ethanol. By using in operando X-ray absorption spectroscopy we have followed in real time the chemical and structural changes that take place on the materials as a function of temperature and reactive atmosphere (i.e. ethanol/water streams). During the first step of CLR for both oxides the most active chemical species are the cations in the tetrahedral sites, irrespective of their chemical nature. Quite rapidly the spinel structure is transformed into a mix of wustite-type oxide and metal alloys, but the formation of a metal phase is easier in the case of cobalt, while iron shows a marked preference to form wustite type oxide. Despite the good reducibility of FeCo2O4 imparted by the high amount of cobalt, its performance in the production of hydrogen is quite poor due to an inefficient oxidation by water steam, which is able to oxidize only the outer shell of the nanoparticles. In contrast, CoFe2O4 due to the residual presence of a reducible wustite phase shows a higher hydrogen yield. Moreover, by combining the structural information provided by X-ray absorption spectroscopy with the analysis of the byproducts of ethanol decomposition we could infer that FeCo2O4 is more selective than CoFe2O4 for the selective dehydrogenation of ethanol to acetaldehyde because of the higher amount of Fe(III) ions in tetrahedral sites
The modifier effect and property mutability
The modifier effect is the reduction in perceived likelihood of a generic property sentence, when the head noun is modified. We investigated the prediction that the modifier effect would be stronger for mutable than for central properties, without finding evidence for this predicted interaction over the course of five experiments. However Experiment 6, which provided a brief context for the modified concepts to lend them greater credibility, did reveal the predicted interaction. It is argued that the modifier effect arises primarily from a general lack of confidence in generic statements about the typical properties of unfamiliar concepts. Neither prototype nor classical models of concept combination receive support from the phenomenon
A successful experimental model for intimal hyperplasia prevention using a resveratrol eluting balloon
Objective: Restenosis due to intimal hyperplasia is a major clinical problem that compromises the success of angioplasty
and endovascular surgery. Resveratrol (RSV) has demonstrated a beneficial effect on restenosis from angioplasty. Unfortunately,
the physicochemical characteristics of RSV reduce the practicality of its immediate clinical application. This
work proposes an experimental model aiming to setup an intravessel, elutable, RSV-containing compound.
Methods: A 140 mg/mL RSV sterile injectable solution with a suitable viscosity for intravascular administration by drugdelivery
catheter (RSV-c) was prepared. This solution was locally administered in the common iliac artery of adult male
New Zealand White rabbits using a dedicated device (Genie; Acrostak, Geneva, Switzerland) after the induction of intimal
hyperplasia by traumatic angioplasty. The RSV concentrations in the wall artery were determined, and the thickness of the
harvested iliac arteries was measured over a 1-month period.
Results: The Genie catheter was applied in rabbit vessels, and the local delivery resulted in an effective reduction in restenosis
after plain angioplasty. Notably, RSV-c forced into the artery wall by balloon expansion might accumulate in the interstitial
areas or within cells, avoiding the washout of solutions. Magnification micrographs showed intimal proliferation was
significantly inhibited when RSV-c was applied. Moreover, no adverse events were documented in in vitro or in vivo studies.
Conclusions: RSV can be advantageously administered in the arterial walls by a drug-delivery catheter to reduce the risk of
restenosis
Improved Method for In Vitro Secondary Amastigogenesis of Trypanosoma cruzi: Morphometrical and Molecular Analysis of Intermediate Developmental Forms
Trypanosoma cruzi undergoes a biphasic life cycle that consists of four alternate developmental stages. In vitro conditions to obtain a synchronic transformation and efficient rates of pure intermediate forms (IFs), which are indispensable for further biochemical, biological, and molecular studies, have not been reported. In the present study, we established an improved method to obtain IFs from secondary amastigogenesis. During the transformation kinetics, we observed progressive decreases in the size of the parasite body, undulating membrane and flagellum that were concomitant with nucleus remodeling and kinetoplast displacement. In addition, a gradual reduction in parasite movement and acquisition of the amastigote-specific Ssp4 antigen were observed. Therefore, our results showed that the in vitro conditions used obtained large quantities of highly synchronous and pure IFs that were clearly distinguished by morphometrical and molecular analyses. Obtaining these IFs represents the first step towards an understanding of the molecular mechanisms involved in amastigogenesis
Pt-Ru Catalysts supported on mesoporous carbons for polymer electrolyte membrane fuel cells
Pt-Ru electrocatalysts supported on xerogels and CMK-3 ordered mesoporous carbons were synthesized by reduction with formate ions (SFM method). Some of the carbon supports were chemically treated with HNO3 in order to generate oxygen groups on the surface, while other supports were heat treated. Physical characterization of the catalyst was obtained using X-ray dispersive energy (EDX) and X-ray diffraction (XRD) techniques. Results showed that Pt-Ru catalysts with similar metal content (20%) and atomic ratios (Pt:Ru 1:1) were obtained. The electrochemical activity was studied by cyclic voltammetry and chronoamperometry. Higher methanol oxidation current densities were found for catalyst deposited on chemically treated supports. Electrode preparation and MEA assembly allowed an in-house built direct methanol fuel to be fitted with the synthesized catalysts and supports in order to assess their performance. Cell and reactants were conditioned by a direct methanol test station. Polarisation curves were measured and confirmed data obtained by voltammetry, regarding the effect of heat treatment of the carbon support. Normalised power curves per weight of catalyst are discussed in terms of the significant impact on noble metal loading and attained cell maximum power, in comparison with results obtained with a commercial catalyst
Influence of catalyst support characteristics and functionalization on the catalytic activity of Pt-Ru for PEM fuel cells
Pt-Ru electrocatalysts supported on carbon xerogels and ordered mesoporous carbons were synthesized by
reduction with formate ions (SFM method). Chemical and heat treatments were applied to modified the surface chemistry of
original carbon supports. Physical characterization of the catalysts was performed using X-ray dispersive energy (EDX) and
X-ray diffraction (XRD) techniques, while the electrochemical activity towards methanol oxidation was studied by cyclic
voltammetry (CV). Pt-Ru catalysts with nominal metal content (20 wt.%) and atomic ratios (Pt:Ru 1:1) were successfully
synthesized on the different supports. Higher methanol oxidation current densities were obtained for those supports with a
higher content of surface oxygen groups. Gas diffusion electrode and membrane-electrode-assembly preparation allowed an
in-house built of a direct methanol fuel monocell for the evaluation of the catalysts performance. Polarization curves were
measured confirming the results obtained in a three electrodes electrochemical cell by CV. Normalized power curves per
weight of Pt are discussed in terms of the significant impact on noble metal loading and attained cell maximum power, in
comparison with results obtained with a commercial catalyst
Brain Gene Expression Signatures From Cerebrospinal Fluid Exosome RNA Profiling
While the Visual Impairment and Intracranial Pressure (VIIP) syndrome observations have focused on ocular symptoms, spaceflight has been also associated with a number of other performance and neurologic signs, such as headaches, cognitive changes, vertigo, nausea, sleep/circadian disruption and mood alterations, which, albeit likely multifactorial, can also result from elevation of intracranial pressure (ICP). We therefore hypothesize that these various symptoms are caused by disturbances in the neurophysiology of the brain structures and are correlated with molecular markers in the cerebrospinal fluid (CSF) as indicators of neurophysiological changes. Exosomes are 30-200 nm microvesicles shed into all biofluids, including blood, urine, and CSF, carrying a highly rich source of intact protein and RNA cargo. Exosomes have been identified in human CSF, and their proteome and RNA pool is a potential new reservoir for biomarker discovery in neurological disorders. The purpose of this study is to investigate changes in brain gene expression via exosome analysis in patients suffering from ICP elevation of varied severity (idiopathic intracranial hypertension -IIH), a condition which shares some of the neuroophthalmological features of VIIP, as a first step toward obtaining evidence suggesting that cognitive function and ICP levels can be correlated with biomarkers in the CSF. Our preliminary work, reported last year, validated the exosomal technology applicable to CSF analysis and demonstrated that it was possible to obtain gene expression evidence of inflammation processes in traumatic brain injury patients. We are now recruiting patients with suspected IIH requiring lumbar puncture at Baylor College of Medicine. Both CSF (5 ml) and human plasma (10 ml) are being collected in order to compare the pattern of differentially expressed genes observed in CSF and in blood. Since blood is much more accessible than CSF, we would like to determine whether plasma biomarkers for elevated ICP can be identified. This may eventually lead to a blood test to diagnose intracranial hypertension
Enzyme-Synthesized Highly Branched Maltodextrins Have Slow Glucose Generation at the Mucosal α-Glucosidase Level and Are Slowly Digestible In Vivo.
For digestion of starch in humans, α-amylase first hydrolyzes starch molecules to produce α-limit dextrins, followed by complete hydrolysis to glucose by the mucosal α-glucosidases in the small intestine. It is known that α-1,6 linkages in starch are hydrolyzed at a lower rate than are α-1,4 linkages. Here, to create designed slowly digestible carbohydrates, the structure of waxy corn starch (WCS) was modified using a known branching enzyme alone (BE) and an in combination with β-amylase (BA) to increase further the α-1,6 branching ratio. The digestibility of the enzymatically synthesized products was investigated using α-amylase and four recombinant mammalian mucosal α-glucosidases. Enzyme-modified products (BE-WCS and BEBA-WCS) had increased percentage of α-1,6 linkages (WCS: 5.3%, BE-WCS: 7.1%, and BEBA-WCS: 12.9%), decreased weight-average molecular weight (WCS: 1.73×108 Da, BE-WCS: 2.76×105 Da, and BEBA-WCS 1.62×105 Da), and changes in linear chain distributions (WCS: 21.6, BE-WCS: 16.9, BEBA-WCS: 12.2 DPw). Hydrolysis by human pancreatic α-amylase resulted in an increase in the amount of branched α-limit dextrin from 26.8% (WCS) to 56.8% (BEBA-WCS). The α-amylolyzed samples were hydrolyzed by the individual α-glucosidases (100 U) and glucogenesis decreased with all as the branching ratio increased. This is the first report showing that hydrolysis rate of the mammalian mucosal α-glucosidases is limited by the amount of branched α-limit dextrin. When enzyme-treated materials were gavaged to rats, the level of postprandial blood glucose at 60 min from BEBA-WCS was significantly higher than for WCS or BE-WCS. Thus, highly branched glucan structures modified by BE and BA had a comparably slow digesting property both in vitro and in vivo. Such highly branched α-glucans show promise as a food ingredient to control postprandial glucose levels and to attain extended glucose release
Data intimacies: building infrastructures for intensified embodied encounters with air pollution
The air is, in many urban contexts, polluted. Governments and institutions monitor particles and gas concentrations to better understand how they perform in the light of air quality guidance and legislation, and to make predictions in terms of future environmental health targets. The visibility of these data is considered crucial for citizens to manage their own health, and a proliferation of new informational forms and apps have been created to achieve this. And yet, beyond everyday decisions (when to use a mask or when to do sports outdoors), it is not clear whether current methods of engaging citizens produce behavioural change or stronger citizen engagement with air pollution. Drawing on the design, construction and ethnography of an urban infrastructure to measure, make visible and remediate particulate matter (PM2.5) through a water vapour cloud that we installed at the Seoul Biennale of Architecture and Urbanism 2017, we examined the effects and affects of producing a public space that allows for physical interaction with data. In Yellow Dust, data from PM2.5 were translated into mist, the density of which was responsive to the number of particles suspended in the air. Data were made sense/ible by the changing conditions of the air surrounding the infrastructure, which can be experienced in embodied, collective and relational ways: what we call ‘molecular intimacies’. By reflecting on how the infrastructure facilitated new modes of sensing data, we consider how ‘data intimacies’ can re-specify action by producing different forms of engagement with air pollution
- …