6,339 research outputs found

    Modeling and analysis of a resonant nanosystem

    Get PDF
    The majority of investigations into nanoelectromechanical resonators focus on a single area of the resonator\u27s function. This focus varies from the development of a model for a beam\u27s vibration, to the modeling of electrostatic forces, to a qualitative explanation of experimentally-obtained currents. Despite these efforts, there remains a gap between these works, and the level of sophistication needed to truly design nanoresonant systems for efficient commercial use. Towards this end, a comprehensive system model for both a nanobeam resonator and its related experimental setup is proposed. Furthermore, a simulation arrangement is suggested as a method for facilitating the study of the system-level behavior of these devices in a variety of cases that could not be easily obtained experimentally or analytically. ^ The dynamics driving the nanoresonator\u27s motion, as well as the electrical interactions influencing the forcing and output of the system, are modeled, experimentally validated, and studied. The model seeks to develop both a simple circuit representation of the nanoresonator, and to create a mathematical system that can be used to predict and interpret the observed behavior. Due to the assumptions used to simplify the model to a point of reasonable comprehension, the model is most accurate for small beam deflections near the first eigenmode of the beam. ^ The process and results of an experimental investigation are documented, and compared with a circuit simulation modeling the full test system. The comparison qualitatively proves the functionality of the model, while a numerical analysis serves to validate the functionality and setup of the circuit simulation. The use of the simulation enables a much broader investigation of both the electrical behavior and the physical device\u27s dynamics. It is used to complement an assessment of the tuning behavior of the system\u27s linear natural frequency by demonstrating the tuning behavior of the full nonlinear response. The simulation is used to demonstrate the difficulties with the contemporary mixing approach to experimental data collection and to complete a variety of case studies investigating the use of the nanoresonator systems in practical applications, such as signal filtering. Many of these case studies would be difficult to complete analytically, but results are quickly achieved through the use of the simulation

    The prevalence of medical reasons for non-participation in the Scottish breast and bowel cancer screening programmes

    Get PDF
    Objective: Increasing uptake of cancer screening is a priority for health systems internationally, however, some patients may not attend because they are undergoing active treatment for the cancer of interest or have other medical reasons that mean participation would be inappropriate. This study aims to quantify the proportion of non-participants who have a medical reason for not attending cancer screening.<p></p> Methods: Medical reasons for not participating in breast and bowel screening were defined a priori on the basis of a literature review and expert opinion. The notes of 700 patients at two GP practices in Scotland were reviewed, to ascertain the prevalence of medical reasons amongst non-participants. Simple proportions and confidence intervals were calculated.<p></p> Results: 17.4% of breast and 2.3% of bowel screening non-participants had a medical reason to not participate. The two most common reasons were previous breast cancer follow up (8.86%) and recent mammogram (6.57%).<p></p> Conclusion: These patients may not benefit from screening while also being distressed by receiving an invitation. This issue also makes accurate monitoring and target-setting for improving uptake difficult. Further work is needed to estimate robustly the extent to which medical reasons account for screening non-participation in a larger population.<p></p&gt

    Summary of oil and gas activity in Ohio during 1963

    Get PDF

    Sub-Trenton rocks from Fayette County, Ohio, to Brant County, Ontario

    Get PDF

    Sub-Trenton rocks from Lee County, Virginia, to Fayette County, Ohio

    Get PDF

    Structural precursor to the metal-insulator transition in V_2O_3

    Full text link
    The temperature dependence of the local structure of V_2O_3 in the vicinity of the metal to insulator transition (MIT) has been investigated using hard X-ray absorption spectroscopy. It is shown that the vanadium pair distance along the hexagonal c-axis changes abruptly at the MIT as expected. However, a continuous increase of the tilt of these pairs sets in already at higher temperatures and reaches its maximum value at the onset of the electronic and magnetic transition. These findings confirm recent theoretical results which claim that electron-lattice coupling is important for the MIT in V_2O_3. Our results suggest that interactions in the basal plane play a decisive role for the MIT and orbital degrees of freedom drive the MIT via changes in hybridization.Comment: 6 pages, 5 figures, 2 table
    • …
    corecore