5 research outputs found

    Using flood water in Managed Aquifer Recharge schemes as a solution for groundwater management in the Cornia valley (Italy)

    Get PDF
    The lower Cornia valley aquifer system (Tuscany, Italy) provides the only source of water for drinking, irrigation, industrial purposes and it also contributes to the water needs of the nearby Elba island. Since 60 years, intensive exploitation of groundwater resulted in consistent head lowering and water balance deficit, causing subsidence, reduction of groundwater dependent ecosystems, and salinization of freshwater resources. Rebalancing the water budget of the hydrologic system is the main objective of the LIFE REWAT project (sustainable WATer management in the lower Cornia valley through demand REduction, aquifer Recharge and river REstoration; http://www.liferewat.eu). Here, five demonstration measures (river restoration; Managed Aquifer Recharge; reuse of treated wastewater for irrigation; high irrigation efficiency scheme; leakage management in water distribution systems) are set in place for promoting water resource management, along with capacity building and participatory actions. A pilot Managed Aquifer Recharge (MAR) infiltration basin for using flood-water was designed and set in operation in Suvereto, testing the new-issued Italian regulation on artificial recharge of aquifers (DM 100/2016). The infiltration basin is located at a pre-existing topographical low near the Cornia River. The river, having intermittent flow, provides the recharge water during high flow periods, including floods, and when discharge is above the minimum ecological flow. The infiltration basin is set in a groundwater recharge area where the aquifer is constituted by gravel and sands. A preliminary project and an executive one were prepared and discussed with the relevant authorities, following one-year long monthly monitoring of surface- and ground-water. The project was supported by a groundwater flow modelling-based approach using the FREEWAT platform (www.freewat.eu). The facility consists of the following elements: i) intake work on the River Cornia; ii) the inlet structure control system, managed by quality (mass spectrometer defining surface water spectral signature) and level probes, and allowing pumping into the facility at predefined head and chemical quality thresholds; iii) a sedimentation basin; iv) the infiltration area (less than 1 ha large); v) the operational monitoring system, based on a network of piezometers where both continuous data (head, T, EC, DO) are gathered and discrete measurements/sampling performed. The cost of construction of the plant is about 300000 C well below the cost of a surface water reservoir for a similar storage. Depending on the climatic conditions, the estimated volume of diverted surface water may vary between 300000 m3/year and 2 Mm3/year. Being the facility a pilot one, diverted water discharge ranges between 20 to 50 l/s. Minimal site development and modification was required, resulting in a no-impact water-work, while providing ecosystem benefits by reconnecting and inundating former abandoned riverbeds. The effectiveness of such pilot may demonstrate the potential for Flood-MAR schemes to increase water availability in scarcity prone areas

    Cell-to-Cell Signaling Influences the Fate of Prostate Cancer Stem Cells and Their Potential to Generate More Aggressive Tumors

    Get PDF
    An increasing number of malignancies has been shown to be initiated and propelled by small subpopulations of cancer stem cells (CSC). However, whether tumor aggressiveness is driven by CSC and by what extent this property may be relevant within the tumor mass is still unsettled. To address this issue, we isolated a rare tumor cell population on the basis of its CD44+CD24− phenotype from the human androgen-independent prostate carcinoma cell line DU145 and established its CSC properties. The behavior of selected CSC was investigated with respect to the bulk DU145 cells. The injection of CSC in nude mice generated highly vascularized tumors infiltrating the adjacent tissues, showing high density of neuroendocrine cells and expressing low levels of E-cadherin and β-catenin as well as high levels of vimentin. On the contrary, when a comparable number of unsorted DU145 cells were injected the resulting tumors were less aggressive. To investigate the different features of tumors in vivo, the influence of differentiated tumor cells on CSC was examined in vitro by growing CSC in the absence or presence of conditioned medium from DU145 cells. CSC grown in permissive conditions differentiated into cell populations with features similar to those of cells held in aggressive tumors generated from CSC injection. Differently, conditioned medium induced CSC to differentiate into a cell phenotype comparable to cells of scarcely aggressive tumors originated from bulk DU145 cell injection. These findings show for the first time that CSC are able to generate differentiated cells expressing either highly or scarcely aggressive phenotype, thus influencing prostate cancer progression. The fate of CSC was determined by signals released from tumor environment. Moreover, using microarray analysis we selected some molecules which could be involved in this cell-to-cell signaling, hypothesizing their potential value for prognostic or therapeutic applications

    Decentramento amministrativo e sistemi territoriali (SIT/GIS)

    No full text
    Decentramento amministrativo e sistemi territoriali (SIT/GIS
    corecore