309 research outputs found
Large Mixing Induced by the Strong Coupling with a Single Bulk Neutrinos
Neutrino is a good probe of extra dimensions. Large mixing and the apparent
lack of very complicated oscillation patterns may be an indication of large
couplings between the brane and a single bulk neutrino. A simple and realistic
five-dimensional model of this kind is discussed. It requires a sterile in
addition to three active neutrinos on the brane, all coupled strongly to one
common bulk neutrino, but not directly among themselves. Mindful that sterile
neutrinos are disfavored in the atmospheric and solar data, we demand induced
mixing to occur among the active neutrinos, but not between the active and the
sterile. The size of the extra dimension is arbitrary in this model,
otherwise it contains six parameters which can be used to fit the three
neutrino masses and the three mixing angles. However, in the model those six
parameters must be suitably ordered, so a successful fit is not guaranteed. It
turns out that not only the data can be fitted, but as a result of the
ordering, a natural connection between the smallness of the reactor angle
and the smallness of the mass-gap ratio can be derived.Comment: Misprints above eq. (22) corrected. To appear in PR
Phase transition in Schwarzschild-de Sitter spacetime
Using a static massive spherically symmetric scalar field coupled to gravity
in the Schwarzschild-de Sitter (SdS) background, first we consider some
asymptotic solutions near horizon and their local equations of state(E.O.S) on
them. We show that near cosmological and event horizons our scalar field
behaves as a dust. At the next step near two pure de-Sitter or Schwarzschild
horizons we obtain a coupling dependent pressure to energy density ratio. In
the case of a minimally couplling this ratio is -1 which springs to the mind
thermodynamical behavior of dark energy. If having a negative pressure behavior
near these horizons we concluded that the coupling constant must be
>. Therefore we derive a new constraint on the value of our coupling .
These two different behaviors of unique matter in the distinct regions of
spacetime at present era can be interpreted as a phase transition from dark
matter to dark energy in the cosmic scales and construct a unified scenario.Comment: 7 pages,no figures,RevTex, Typos corrected and references adde
Cosmic coincidence problem and variable constants of physics
The standard model of cosmology is investigated using time dependent
cosmological constant and Newton's gravitational constant . The
total energy content is described by the modified Chaplygin gas equation of
state. It is found that the time dependent constants coupled with the modified
Chaplygin gas interpolate between the earlier matter to the later dark energy
dominated phase of the universe. We also achieve a convergence of parameter
, with minute fluctuations, showing an evolving . Thus our
model fairly alleviates the cosmic coincidence problem which demands
at present time.Comment: 27 pages, 15 figure
Palatini approach to 1/R gravity and its implications to the late Universe
By applying the Palatini approach to the 1/R-gravity model it is possible to
explain the present accelerated expansion of the Universe. Investigation of the
late Universe limiting case shows that: (i) due to the curvature effects the
energy-momentum tensor of the matter field is not covariantly conserved; (ii)
however, it is possible to reinterpret the curvature corrections as sources of
the gravitational field, by defining a modified energy-momentum tensor; (iii)
with the adoption of this modified energy-momentum tensor the Einstein's field
equations are recovered with two main modifications: the first one is the
weakening of the gravitational effects of matter whereas the second is the
emergence of an effective varying "cosmological constant"; (iv) there is a
transition in the evolution of the cosmic scale factor from a power-law scaling
to an asymptotically exponential scaling ; (v) the energy density of the matter field scales as ; (vi) the present age of the Universe and the
decelerated-accelerated transition redshift are smaller than the corresponding
ones in the CDM model.Comment: 5 pages and 2 figures. Accepted in PR
Role of Brans-Dicke Theory with or without self-interacting potential in cosmic acceleration
In this work we have studied the possibility of obtaining cosmic acceleration
in Brans-Dicke theory with varying or constant (Brans- Dicke
parameter) and with or without self-interacting potential, the background fluid
being barotropic fluid or Generalized Chaplygin Gas. Here we take the power law
form of the scale factor and the scalar field. We show that accelerated
expansion can also be achieved for high values of for closed Universe.Comment: 12 Latex pages, 20 figures, RevTex styl
Particle-Like Description in Quintessential Cosmology
Assuming equation of state for quintessential matter: , we
analyse dynamical behaviour of the scale factor in FRW cosmologies. It is shown
that its dynamics is formally equivalent to that of a classical particle under
the action of 1D potential . It is shown that Hamiltonian method can be
easily implemented to obtain a classification of all cosmological solutions in
the phase space as well as in the configurational space. Examples taken from
modern cosmology illustrate the effectiveness of the presented approach.
Advantages of representing dynamics as a 1D Hamiltonian flow, in the analysis
of acceleration and horizon problems, are presented. The inverse problem of
reconstructing the Hamiltonian dynamics (i.e. potential function) from the
luminosity distance function for supernovae is also considered.Comment: 35 pages, 26 figures, RevTeX4, some applications of our treatment to
investigation of quintessence models were adde
Oscillation Induced Neutrino Asymmetry Growth in the Early Universe
We study the dynamics of active-sterile neutrino oscillations in the early
universe using full momentum-dependent quantum-kinetic equations. These
equations are too complicated to allow for an analytical treatment, and
numerical solution is greatly complicated due to very pronounced and narrow
structures in the momentum variable introduced by resonances. Here we introduce
a novel dynamical discretization of the momentum variable which overcomes this
problem. As a result we can follow the evolution of neutrino ensemble
accurately well into the stable growing phase. Our results confirm the
existence of a "chaotic region" of mixing parameters, for which the final sign
of the asymmetry, and hence the SBBN prediction of He(4)-abundance cannot be
accurately determined.Comment: 23 pages, 9 eps-figs, Latex, uses JHEP clas
Supernova Bounds on Majoron-emitting decays of light neutrinos
Neutrino masses arising from the spontaneous violation of ungauged
lepton-number are accompanied by a physical Goldstone boson, generically called
Majoron. In the high-density supernova medium the effects of Majoron-emitting
neutrino decays are important even if they are suppressed in vacuo by small
neutrino masses and/or small off-diagonal couplings. We reconsider the
influence of these decays on the neutrino signal of supernovae in the light of
recent Super-Kamiokande data on solar and atmospheric neutrinos. We find that
majoron-neutrino coupling constants in the range 3\times 10^{-7}\lsim g\lsim
2\times 10^{-5} or g \gsim 3 \times 10^{-4} are excluded by the observation
of SN1987A. Then we discuss the potential of Superkamiokande and the Sudbury
Neutrino Observatory to detect majoron neutrino interactions in the case of a
future galactic supernova. We find that these experiments could probe majoron
neutrino interactions with improved sensitivity.Comment: 28 pages, 5 figure
Generalized Chaplygin Gas, Accelerated Expansion and Dark Energy-Matter Unification
We consider the scenario emerging from the dynamics of a generalized
-brane in a spacetime. The equation of state describing this
system is given in terms of the energy density, , and pressure, , by
the relationship , where is a positive constant and
. We discuss the conditions under which homogeneity arises
and show that this equation of state describes the evolution of a universe
evolving from a phase dominated by non-relativistic matter to a phase dominated
by a cosmological constant via an intermediate period where the effective
equation of state is given by .Comment: 5 pages, 4 figures, revte
Dissipative Future Universe without Big Rip
The present study deals with dissipative future universe without big rip in
context of Eckart formalism. The generalized chaplygin gas, characterized by
equation of state , has been considered as
a model for dark energy due to its dark-energy-like evolution at late time. It
is demonstrated that, if the cosmic dark energy behaves like a fluid with
equation of state ; , as well as chaplygin gas
simultaneously then the big rip problem does not arises and the scale factor is
found to be regular for all time.Comment: 6 pages, 2 figures, To appear in Int. J. Theor. Phy
- …