7,993 research outputs found

    Choosing the optimal dose in sublingual immunotherapy: Rationale for the 300 index of reactivity dose

    Get PDF
    Sublingual immunotherapy (SLIT) is an effective and well-tolerated method of treating allergic respiratory diseases associated with seasonal and perennial allergens. In contrast to the subcutaneous route, SLIT requires a much greater amount of antigen to achieve a clinical effect. Many studies have shown that SLIT involves a dose-response relationship, and therefore it is important to use a proven clinically effective dose from the onset of treatment, because low doses are ineffective and very high doses may increase the risk of side effects. A well-defined standardization of allergen content is also crucial to ensure consistent quality, potency and appropriate immunomodulatory action of the SLIT product. Several methods of measuring antigenicity are used by manufacturers of SLIT products, including the index of reactivity (IR), standardized quality tablet unit, and bioequivalent allergy unit. A large body of evidence has established the 300 IR dose of SLIT as offering optimal efficacy and tolerability for allergic rhinitis due to grass and birch pollen and HDM, and HDM-induced moderate, persistent allergic asthma. The 300 IR dose also offers consistency of dosing across a variety of different allergens, and is associated with higher rates of adherence and patient satisfaction. Studies in patients with grass pollen allergies showed that the 300 IR dose has a rapid onset of action, is effective in both adults and children in the short term and, when administered pre-coseasonally in the long term, and maintains the clinical benefit, even after cessation of treatment. In patients with HDM-associated AR and/or asthma, the 300 IR dose also demonstrated significant improvements in symptoms and quality of life, and significantly decreased use of symptomatic medication. The 300 IR dose is well tolerated, with adverse events generally being of mild or moderate severity, declining in frequency and severity over time and in the subsequent courses. We discuss herein the most important factors that affect the selection of the optimal dose of SLIT with natural allergens, and review the rationale and evidence supporting the use of the 300 IR dose

    Disorder effects in diluted ferromagnetic semiconductors

    Full text link
    Carrier induced ferromagnetism in diluted III-V semi-conductor is analyzed within a two step approach. First, within a single site CPA formalism, we calculate the element resolved averaged Green's function of the itinerant carrier. Then using a generalized RKKY formula we evaluate the Mn-Mn long-range exchange integrals and the Curie temperature as a function of the exchange parameter, magnetic impurity concentration and carrier density. The effect of the disorder (impurity scattering) appears to play a crucial role. The standard RKKY calculation (no scattering processes), strongly underestimate the Curie temperature and is inappropriate to describe magnetism in diluted magnetic semi-conductors. It is also shown that an antiferromagnetic exchange favors higher Curie temperature.Comment: tex file + 4 .eps figures are included. submited to PR

    Panchromatic observations and modeling of the HV Tau C edge-on disk

    Get PDF
    We present new high spatial resolution (<~ 0.1") 1-5 micron adaptive optics images, interferometric 1.3 mm continuum and 12CO 2-1 maps, and 350 micron, 2.8 and 3.3 mm fluxes measurements of the HV Tau system. Our adaptive optics images reveal an unusually slow orbital motion within the tight HV Tau AB pair that suggests a highly eccentric orbit and/or a large deprojected physical separation. Scattered light images of the HV Tau C edge-on protoplanetary disk suggest that the anisotropy of the dust scattering phase function is almost independent of wavelength from 0.8 to 5 micron, whereas the dust opacity decreases significantly over the same range. The images further reveal a marked lateral asymmetry in the disk that does not vary over a timescale of 2 years. We further detect a radial velocity gradient in the disk in our 12CO map that lies along the same position angle as the elongation of the continuum emission, which is consistent with Keplerian rotation around an 0.5-1 Msun central star, suggesting that it could be the most massive component in the triple system. We use a powerful radiative transfer model to compute synthetic disk observations and use a Bayesian inference method to extract constraints on the disk properties. Each individual image, as well as the spectral energy distribution, of HV Tau C can be well reproduced by our models with fully mixed dust provided grain growth has already produced larger-than-interstellar dust grains. However, no single model can satisfactorily simultaneously account for all observations. We suggest that future attempts to model this source include more complex dust properties and possibly vertical stratification. (Abridged)Comment: 26 pages, 11 figures, editorially accepted for publication in Ap

    Incorporating Emotion and Personality-Based Analysis in User-Centered Modelling

    Get PDF
    Understanding complex user behaviour under various conditions, scenarios and journeys is fundamental to improving the user-experience for a given system. Predictive models of user reactions, responses—and in particular, emotions—can aid in the design of more intuitive and usable systems. Building on this theme, the preliminary research presented in this paper correlates events and interactions in an online social network against user behaviour, focusing on personality traits. Emotional context and tone is analysed and modelled based on varying types of sentiments that users express in their language using the IBM Watson Developer Cloud tools. The data collected in this study thus provides further evidence towards supporting the hypothesis that analysing and modelling emotions, sentiments and personality traits provides valuable insight into improving the user experience of complex social computer systems

    Long-term in situ observations of biomass burning aerosol at a high altitude station in Venezuela – sources, impacts and interannual variability

    Get PDF
    First long-term observations of South American biomass burning aerosol within the tropical lower free troposphere are presented. The observations were conducted between 2007 and 2009 at a high altitude station (4765 m a.s.l.) on the Pico Espejo, Venezuela. Sub-micron aerosol volume, number concentrations of primary particles and particle absorption were observed. Orographic lifting and shallow convection leads to a distinct diurnal cycle at the station. It enables measurements within the lower free troposphere during night time and observations of boundary layer air masses during day time and at their transitional regions. The seasonal cycle is defined by a wet rainy season and a dry biomass burning season. The particle load of biomass burning aerosol is dominated by fires in the Venezuelan savannah. Increases of aerosol concentrations could not be linked to long-range transport of biomass burning plumes from the Amazon basin or Africa due to effective wet scavenging of particles. Highest particle concentrations were observed within boundary layer air masses during the dry season. Ambient sub-micron aerosol volume reached 1.4 &plusmn; 1.3 &mu;m<sup>3</sup> cm<sup>&minus;3</sup>, heated (300 &deg;C) particle number concentrations 510 &plusmn; 420 cm<sup>&minus;3</sup> and the absorption coefficient 0.91 &plusmn; 1.2 Mm<sup>&minus;1</sup>. The respective concentrations were lowest within the lower free troposphere during the wet season and averaged at 0.19 &plusmn; 0.25 &mu;m<sup>3</sup> cm<sup>&minus;3</sup>, 150 &plusmn; 94 cm<sup>&minus;3</sup> and 0.15 &plusmn; 0.26 Mm<sup>&minus;1</sup>. A decrease of particle concentrations during the dry seasons from 2007–2009 could be connected to a decrease in fire activity in the wider region of Venezuela using MODIS satellite observations. The variability of biomass burning is most likely linked to the El Niño-Southern Oscillation (ENSO). Low biomass burning activity in the Venezuelan savannah was observed to follow La Niña conditions, high biomass burning activity followed El Niño conditions

    Applicability of Monte Carlo Glauber models to relativistic heavy ion collision data

    Full text link
    The accuracy of Monte Carlo Glauber model descriptions of minimum-bias multiplicity frequency distributions is evaluated using data from the Relativistic Heavy Ion Collider (RHIC) within the context of a sensitive, power-law representation introduced previously by Trainor and Prindle (TP). Uncertainties in the Glauber model input and in the mid-rapidity multiplicity frequency distribution data are reviewed and estimated using the TP centrality methodology. The resulting errors in model-dependent geometrical quantities used to characterize heavy ion collisions ({\em i.e.} impact parameter, number of nucleon participants NpartN_{part}, number of binary interactions NbinN_{bin}, and average number of binary collisions per incident participant nucleon ν\nu) are presented for minimum-bias Au-Au collisions at sNN\sqrt{s_{NN}} = 20, 62, 130 and 200 GeV and Cu-Cu collisions at sNN\sqrt{s_{NN}} = 62 and 200 GeV. Considerable improvement in the accuracy of collision geometry quantities is obtained compared to previous Monte Carlo Glauber model studies, confirming the TP conclusions. The present analysis provides a comprehensive list of the sources of uncertainty and the resulting errors in the above geometrical collision quantities as functions of centrality. The capability of energy deposition data from trigger detectors to enable further improvements in the accuracy of collision geometry quantities is also discussed.Comment: 27 pages, 4 figures, 11 table
    corecore