9,798 research outputs found

    Approximate closed-form formulas for the zeros of the Bessel Polynomials

    Get PDF
    We find approximate expressions x(k,n) and y(k,n) for the real and imaginary parts of the kth zero z_k=x_k+i y_k of the Bessel polynomial y_n(x). To obtain these closed-form formulas we use the fact that the points of well-defined curves in the complex plane are limit points of the zeros of the normalized Bessel polynomials. Thus, these zeros are first computed numerically through an implementation of the electrostatic interpretation formulas and then, a fit to the real and imaginary parts as functions of k and n is obtained. It is shown that the resulting complex number x(k,n)+i y(k,n) is O(1/n^2)-convergent to z_k for fixed kComment: 9 pages, 2 figure

    Survival and Nonescape Probabilities for Resonant and Nonresonant Decay

    Full text link
    In this paper we study the time evolution of the decay process for a particle confined initially in a finite region of space, extending our analysis given recently (Phys. Rev. Lett. 74, 337 (1995)). For this purpose, we solve exactly the time-dependent Schroedinger equation for a finite-range potential. We calculate and compare two quantities: (i) the survival probability S(t), i.e., the probability that the particle is in the initial state after a time t; and (ii) the nonescape probability P(t), i.e., the probability that the particle remains confined inside the potential region after a time t. We analyze in detail the resonant and nonresonant decay. In the former case, after a very short time, S(t) and P(t) decay exponentially, but for very long times they decay as a power law, albeit with different exponents. For the nonresonant case we obtain that both quantities differ initially. However, independently of the resonant and nonresonant character of the initial state we always find a transition to the ground state of the system which indicates a process of ``loss of memory'' in the decay.Comment: 26 pages, RevTex file, figures available upon request from [email protected] (To be published in Annals of Physics
    • …
    corecore