18 research outputs found

    A transmission problem across a fractal self-similar interface

    Full text link
    We consider a transmission problem in which the interior domain has infinitely ramified structures. Transmission between the interior and exterior domains occurs only at the fractal component of the interface between the interior and exterior domains. We also consider the sequence of the transmission problems in which the interior domain is obtained by stopping the self-similar construction after a finite number of steps; the transmission condition is then posed on a prefractal approximation of the fractal interface. We prove the convergence in the sense of Mosco of the energy forms associated with these problems to the energy form of the limit problem. In particular, this implies the convergence of the solutions of the approximated problems to the solution of the problem with fractal interface. The proof relies in particular on an extension property. Emphasis is put on the geometry of the ramified domain. The convergence result is obtained when the fractal interface has no self-contact, and in a particular geometry with self-contacts, for which an extension result is proved

    A global land cover training dataset from 1984 to 2020

    No full text
    Abstract State-of-the-art cloud computing platforms such as Google Earth Engine (GEE) enable regional-to-global land cover and land cover change mapping with machine learning algorithms. However, collection of high-quality training data, which is necessary for accurate land cover mapping, remains costly and labor-intensive. To address this need, we created a global database of nearly 2 million training units spanning the period from 1984 to 2020 for seven primary and nine secondary land cover classes. Our training data collection approach leveraged GEE and machine learning algorithms to ensure data quality and biogeographic representation. We sampled the spectral-temporal feature space from Landsat imagery to efficiently allocate training data across global ecoregions and incorporated publicly available and collaborator-provided datasets to our database. To reflect the underlying regional class distribution and post-disturbance landscapes, we strategically augmented the database. We used a machine learning-based cross-validation procedure to remove potentially mis-labeled training units. Our training database is relevant for a wide array of studies such as land cover change, agriculture, forestry, hydrology, urban development, among many others
    corecore