264 research outputs found

    Impact of physical activity on redox status and nitric oxide bioavailability in nonoverweight and overweight/obese prepubertal children

    Get PDF
    Nutritional status might contribute to variations induced by physical activity (PA) in redox status biomarkers. We investigated the influence of PA on redox status and nitric oxide (NO) production/metabolism biomarkers in nonoverweight and overweight/obese prepubertal children. We performed a cross-sectional evaluation of 313 children aged 8-9 years (163 nonoverweight, 150 overweight/obese) followed since birth in a cohort study (Generation XXI, Porto, Portugal). Plasma total antioxidant status (P-TAS), plasma and urinary isoprostanes (P-Isop, U-Isop), urinary hydrogen peroxide (U-H2O2), myeloperoxidase (MPO) and plasma and urinary nitrates and nitrites (P-NOx, U-NOx) were assessed, as well as their association with variables of reported PA quantification (categories of PA frequency (>1x/week and ≀1x/week)and continuous PA index (obtained by the sum of points)) in a questionnaire with increasing ranks from sedentary to vigorous activity levels. U-NOx was significantly higher in children who presented higher PA index scores and higher PA frequency. Separately by BMI classes, U-NOx was significantly higher only in nonoverweight children who practiced PA more frequently (p = 0.037). In overweight/obese children, but not in nonoverweight, P-TAS was higher among children with higher PA frequency (p = 0.007). Homeostasis model assessment index (HOMA-IR) was significantly lower in more active overweight/obese children, but no differences were observed in nonoverweight children. In the fully adjusted multivariate linear regression models for P-TAS, in the overweight/obese group, children with higher PA frequency presented higher P-TAS. In the U-NOx models, U-NOx significantly increased with PA index, only in nonoverweight children. Our results provide additional evidence in support of a protective effect of physical activity, in nonoverweight by increasing NO bioavailability and in overweight/obese children by enhancing systemic antioxidant capacity and insulin sensitivity. These results highlight the importance of engaging in regular physical exercise, particularly among overweight/obese children, in which a positive association between oxidant status and cardiometabolic risk markers has been described.This project was supported by FEDER funds from Programa Operacional Factores de Competitividade – COMPETE [FCOMP-01-0124-FEDER-028751], by national funds from the Portuguese Foundation for Science and Technology (FCT), Lisbon, Portugal [PTDC/DTP-PIC/0239/2012] and by Calouste Gulbenkian Foundation. Liane Correia-Costa was supported by FCT [SFRH/SINTD/95898/2013] and Teresa Sousa was supported by FCT and POPH/FSE (EC) [CiĂȘncia 2008 and SFRH/BPD/112005]

    Interplay of quantum and classical fluctuations near quantum critical points

    Full text link
    For a system near a quantum critical point (QCP), above its lower critical dimension dLd_L, there is in general a critical line of second order phase transitions that separates the broken symmetry phase at finite temperatures from the disordered phase. The phase transitions along this line are governed by thermal critical exponents that are different from those associated with the quantum critical point. We point out that, if the effective dimension of the QCP, deff=d+zd_{eff}=d+z (dd is the Euclidean dimension of the system and zz the dynamic quantum critical exponent) is above its upper critical dimension dCd_C, there is an intermingle of classical (thermal) and quantum critical fluctuations near the QCP. This is due to the breakdown of the generalized scaling relation ψ=Îœz\psi=\nu z between the shift exponent ψ\psi of the critical line and the crossover exponent Îœz\nu z, for d+z>dCd+z>d_C by a \textit{dangerous irrelevant interaction}. This phenomenon has clear experimental consequences, like the suppression of the amplitude of classical critical fluctuations near the line of finite temperature phase transitions as the critical temperature is reduced approaching the QCP.Comment: 10 pages, 6 figures, to be published in Brazilian Journal of Physic

    Determinants of carotid-femoral pulse wave velocity in prepubertal children

    Get PDF
    BACKGROUND: Pulse wave velocity (PWV) is a noninvasive technique to evaluate arterial stiffness, a dynamic property of the vessels, reflecting their structure and function. Childhood obesity is associated with several cardiovascular comorbidities and to the progression of atherosclerosis. We aimed to compare carotid-femoral PWV between normal weight and overweight/obese prepubertal children and to quantify its association with other cardiovascular risk factors. METHODS: Cross-sectional study of 315 children aged 8-9years. Anthropometrics, 24-h ambulatory blood pressure (BP) and carotid-femoral PWV were measured. Classification of obesity was according to World Health Organization (WHO) body mass index (BMI)-for-age reference values. RESULTS: Compared to normal weight children, overweight and obese children presented significantly higher levels of PWV (4.95 (P25-P75: 4.61-5.23), 5.00 (4.71-5.33), 5.10 (4.82-5.50) m/s, respectively; ptrend<0.001). Significant positive correlations were found between PWV and total cholesterol, LDL cholesterol, triglycerides, fasting insulin and insulin resistance levels (HOMA-IR) and with high-sensitivity C-reactive protein (hs-CRP). In a multivariate linear regression model adjusted for sex, age, height and 24-h systolic blood pressure z-score, the independent determinants of PWV were BMI, HOMA-IR and the absence of dipping. CONCLUSIONS: The association between PWV and the loss of dipping and insulin resistance levels, independently of the BMI, reinforces the contribution of these comorbidities to vascular injury in early life

    BRCA1-like signature in triple negative breast cancer: Molecular and clinical characterization reveals subgroups with therapeutic potential.

    Get PDF
    Triple negative (TN) breast cancers make up some 15% of all breast cancers. Approximately 10-15% are mutant for the tumor suppressor, BRCA1. BRCA1 is required for homologous recombination-mediated DNA repair and deficiency results in genomic instability. BRCA1-mutated tumors have a specific pattern of genomic copy number aberrations that can be used to classify tumors as BRCA1-like or non-BRCA1-like. BRCA1 mutation, promoter methylation, BRCA1-like status and genome-wide expression data was determined for 112 TN breast cancer samples with long-term follow-up. Mutation status for 21 known DNA repair genes and PIK3CA was assessed. Gene expression and mutation frequency in BRCA1-like and non-BRCA1-like tumors were compared. Multivariate survival analysis was performed using the Cox proportional hazards model. BRCA1 germline mutation was identified in 10% of patients and 15% of tumors were BRCA1 promoter methylated. Fifty-five percent of tumors classified as BRCA1-like. The functions of genes significantly up-regulated in BRCA1-like tumors included cell cycle and DNA recombination and repair. TP53 was found to be frequently mutated in BRCA1-like (P < 0.05), while PIK3CA was frequently mutated in non-BRCA1-like tumors (P < 0.05). A significant association with worse prognosis was evident for patients with BRCA1-like tumors (adjusted HR = 3.32, 95% CI = 1.30-8.48, P = 0.01). TN tumors can be further divided into two major subgroups, BRCA1-like and non-BRCA1-like with different mutation and expression patterns and prognoses. Based on these molecular patterns, subgroups may be more sensitive to specific targeted agents such as PI3K or PARP inhibitors

    Oxidative stress and nitric oxide are increased in obese children and correlate with cardiometabolic risk and renal function

    Get PDF
    Oxidative stress and nitric oxide (NO) appear to represent important links between obesity and cardiovascular, metabolic and/or renal disease. We investigated whether oxidative stress and NO production/metabolism are increased in overweight and obese prepubertal children and correlate with cardiometabolic risk and renal function. We performed a cross-sectional evaluation of 313 children aged 8-9 years. Anthropometrics, 24-h ambulatory blood pressure, pulse wave velocity (PWV), insulin resistance (homoeostasis model assessment index (HOMA-IR)), inflammatory/metabolic biomarkers, estimated glomerular filtration rate (eGFR), plasma total antioxidant status (TAS), plasma and urinary isoprostanes (P-Isop, U-Isop), urinary hydrogen peroxide (U-H2O2), and plasma and urinary nitrates and nitrites (P-NOx, U-NOx) were compared among normal weight, overweight and obese groups, according to WHO BMI z-score reference. U-Isop were increased in the obese group, whereas U-NOx were increased in both overweight and obese children. U-Isop were positively correlated with U-H2O2, myeloperoxidase (MPO), high-sensitivity C-reactive protein, HOMA-IR and TAG. TAS correlated negatively with U-Isop and MPO and positively with PWV. HOMA-IR and U-H2O2 were associated with higher U-Isop, independently of BMI and eGFR, and total cholesterol and U-H2O2 were associated with U-NOx, independently of BMI, eGFR values and P-NOx concentration. In overweight and obese children, eGFR decreased across P-NOx tertiles (median: 139·3 (25th, 75th percentile 128·0, 146·5), 128·0 (25th, 75th percentile 121·5, 140·4), 129·5 (25th, 75th percentile 119·4, 138·3), P for linear trend=0·003). We conclude that oxidant status and NO are increased in relation to fat accumulation and, even in young children, they translate into higher values of cardiometabolic risk markers and affect renal function

    The anti-myeloma activity of a novel purine scaffold HSP90 inhibitor PU-H71 is via inhibition of both HSP90A and HSP90B1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heat shock protein 90 (HSP90) inhibitors have emerged as a promising class of anti-cancer drugs in both solid and hematologic malignancies. The HSP90 family includes the cytosolic HSP90 (HSP90AA1), the ER paralogue gp96 (HSP90B1) and the mitochondrial member TRAP1 (HSP90L). We evaluated the <it>in vitro </it>anti-tumor activity and mechanism of action of PU-H71, a novel purine scaffold HSP90 inhibitor in human multiple myeloma cell lines.</p> <p>Methods</p> <p>Multiple human myeloma cell lines including cells that are resistant to corticosteroids and bortezimab were treated with PU-H71, followed by analysis of cell viability, cell cycle progression and apoptosis, by flow cytometry and caspase 3 immunoblot. Induction of unfolded protein response was studied by XBP-1 s immunoblot. The role of gp96 was further assessed by small hairpin RNA knockdown of gp96 before treatment with PU-H71.</p> <p>Results</p> <p>PU-H71 has potent <it>in vitro </it>anti-myeloma activity in both drug-sensitive and drug-resistant cell lines. PU-H71 activates the unfolded protein response and induces caspase-dependent apoptosis. The stable gp96 knockdown human myeloma cell line was found to be more resistant to PU-H71 and other HSP90 inhibitors including 17-AAG and 17-DMAG, even though these cells are more sensitive to conventional anti-myeloma drugs.</p> <p>Conclusion</p> <p>We conclude that PU-H71 is a promising drug for the treatment of myeloma. Our finding further suggests that PU-H71 and the geldanamycin analogues work in part by inhibiting the endoplasmic reticulum gp96 along with the cytosolic HSP90.</p

    Mutation analysis of CBP and PCAF reveals rare inactivating mutations in cancer cell lines but not in primary tumours

    Get PDF
    In this study we screened the histone acetyltransferases CBP and PCAF for mutations in human epithelial cancer cell lines and primary tumours. We identified two CBP truncations (both in cell lines), seven PCAF missense variants and four CBP intronic microdeletions. These data suggest that neither gene is commonly inactivated in human epithelial cancers

    Merozoite release from Plasmodium falciparum-infected erythrocytes involves the transfer of DiIC16 from infected cell membrane to Maurer’s clefts

    Get PDF
    Merozoite release from infected erythrocytes is a complex process, which is still not fully understood. Such process was characterised at ultra-structural level in this work by labelling erythrocyte membrane with a fluorescent lipid probe and subsequent photo-conversion into an electron-dense precipitate. A lipophilic DiIC16 probe was inserted into the infected erythrocyte surface and the transport of this phospholipid analogue through the erythrocyte membrane was followed up during 48 h of the asexual erythrocyte cycle. The lipid probe was transferred from infected erythrocyte membranes to Maurer’s clefts during merozoite release, thereby indicating that these membranes remained inside host cells after parasite release. Fluorescent structures were never observed inside infected erythrocytes preceding merozoite exit and merozoites released from infected erythrocyte were not fluorescent. However, specific precipitated material was localised bordering the parasitophorous vacuole membrane and tubovesicular membranes when labelled non-infected erythrocytes were invaded by merozoites. It was revealed that lipids were interchangeable from one membrane to another, passing from infected erythrocyte membrane to Maurer’s clefts inside the erythrocyte ghost, even after merozoite release. Maurer’s clefts became photo-converted following merozoite release, suggesting that these structures were in close contact with infected erythrocyte membrane during merozoite exit and possibly played some role in malarial parasite exit from the host cell
    • 

    corecore