915 research outputs found

    Zero-Temperature Properties of the Quantum Dimer Model on the Triangular Lattice

    Full text link
    Using exact diagonalizations and Green's function Monte Carlo simulations, we have studied the zero-temperature properties of the quantum dimer model on the triangular lattice on clusters with up to 588 sites. A detailed comparison of the properties in different topological sectors as a function of the cluster size and for different cluster shapes has allowed us to identify different phases, to show explicitly the presence of topological degeneracy in a phase close to the Rokhsar-Kivelson point, and to understand finite-size effects inside this phase. The nature of the various phases has been further investigated by calculating dimer-dimer correlation functions. The present results confirm and complement the phase diagram proposed by Moessner and Sondhi on the basis of finite-temperature simulations [Phys. Rev. Lett. {\bf 86}, 1881 (2001)].Comment: 10 pages, 16 figure

    Electron-phonon coupling and phonon self-energy in MgB2_2: do we really understand MgB2_2 Raman spectra ?

    Full text link
    We consider a model Hamiltonian fitted on the ab-initio band structure to describe the electron-phonon coupling between the electronic σ−\sigma-bands and the phonon E2g_{2g} mode in MgB2_2. The model allows for analytical calculations and numerical treatments using very large k-point grids. We calculate the phonon self-energy of the E2g_{2g} mode along two high symmetry directions in the Brillouin zone. We demonstrate that the contribution of the σ\sigma bands to the Raman linewidth of the E2g_{2g} mode via the electron-phonon coupling is zero. As a consequence the large resonance seen in Raman experiments cannot be interpreted as originated from the E2gE_{2g} mode at Γ\Gamma. We examine in details the effects of Fermi surface singularities in the phonon spectrum and linewidth and we determine the magnitude of finite temperature effects in the the phonon self-energy. From our findings we suggest several possible effects which might be responsible for the MgB2_2 Raman spectra.Comment: 10 pages, 9 figure

    Violation of Ioffe-Regel condition but saturation of resistivity of the high Tc cuprates

    Full text link
    We demonstrate that the resistivity data of a number of high Tc cuprates, in particular La(2-x)SrxCuO4, are consistent with resistivity saturation, although the Ioffe-Regel condition is strongly violated. By using the f-sum rule together with calculations of the kinetic energy in the t-J model, we show that the saturation resistivity is unusually large. This is related to the strong reduction of the kinetic energy due to strong correlation effects. The fulfilment of the Ioffe-Regel condition for conventional transition metal compounds is found to be somewhat accidental.Comment: 4 pages, RevTeX, 2 eps figures, additional material available at http://www.mpi-stuttgart.mpg.de/andersen/saturation

    Evidence for a GABAergic system in rodent and human testis: Local GABA production and GABA receptors

    Get PDF
    The major neurotransmitter of the central nervous system, gamma-aminobutyric acid (GABA), exerts its actions through GABA(A), GABA(B) and GABA(C) receptors. GABA and GABA receptors are, however, also present in several non-neural tissues, including the endocrine organs pituitary, pancreas and testis. In the case of the rat testis, GABA appears to be linked to the regulation of steroid synthesis by Leydig cells via GABA(A) receptors, but neither testicular sources of GABA, nor the precise nature of testicular GABA receptors are fully known. We examined these points in rat, mouse, hamster and human testicular samples. RT-PCR followed by sequencing showed that the GABA-synthesizing enzymes glutamate decarboxylase (GAD) 65 and/or GAD67, as well as the vesicular GABA transporter vesicular inhibitory amino acid transporter (VIAAT/VGAT) are expressed. Testicular GAD in the rat was shown to be functionally active by using a GAD assay, and Western blot analysis confirmed the presence of GAD65 and GAD67. Interstitial cells, most of which are Leydig cells according to their location and morphological characteristics, showed positive immunoreaction for GAD and VIAAT/VGAT proteins. In addition, several GABA(A) receptor subunits (alpha1-3, beta1-3, gamma1-3), as well as GABAB receptor subunits R1 and R2, were detected by RT-PCR. Western blot analysis confirmed the results for GABA(A) receptor subunits beta2/3 in the rat, and immunohistochemistry identified interstitial Leydig cells to possess immunoreactive GABA(A) receptor subunits beta2/3 and alpha1. The presence of GABA(A) receptor subunit alpha1 mRNA in interstitial cells of the rat testis was further shown after laser microdissection followed by RT-PCR analysis. In summary, these results describe molecular details of the components of an intratesticular GABAergic system expressed in the endocrine compartment of rodent and human testes. While the physiological significance of this peripheral neuroendocrine system conserved throughout species remains to be elucidated, its mere presence in humans suggests the possibility that clinically used drugs might be able to interfere with testicular function. Copyright (C) 2003 S. Karger AG, Basel

    Hole-depletion of ladders in Sr14_{14}Cu24_{24}O41_{41} induced by correlation effects

    Full text link
    The hole distribution in Sr14_{14}Cu24_{24}O41_{41} is studied by low temperature polarization dependent O K Near-Edge X-ray Absorption Fine Structure measurements and state of the art electronic structure calculations that include core-hole and correlation effects in a mean-field approach. Contrary to all previous analysis, based on semi-empirical models, we show that correlations and antiferromagnetic ordering favor the strong chain hole-attraction. For the remaining small number of holes accommodated on ladders, leg-sites are preferred to rung-sites. The small hole affinity of rung-sites explains naturally the 1D - 2D cross-over in the phase diagram of (La,Y,Sr,Ca)14_{14}Cu24_{24}O41_{41}Comment: 6 pages, 8 figure

    Effects of phase transitions in devices actuated by the electromagnetic vacuum force

    Full text link
    We study the influence of the electromagnetic vacuum force on the behaviour of a model device based on materials, like germanium tellurides, that undergo fast and reversible metal-insulator transitions on passing from the crystalline to the amorphous phase. The calculations are performed at finite temperature and fully accounting for the behaviour of the material dielectric functions. The results show that the transition can be exploited to extend the distance and energy ranges under which the device can be operated without undergoing stiction phenomena. We discuss the approximation involved in adopting the Casimir expression in simulating nano- and micro- devices at finite temperature

    Phonon dispersion and lifetimes in MgB2

    Get PDF
    We measure phonon dispersion and linewidth in a single crystal of MgB_2 along the Gamma-A, Gamma-M and A-L directions using inelastic X-Ray scattering. We use Density Functional Theory to compute the effect of both electron-phonon coupling and anharmonicity on the linewidth, obtaining excellent agreement with experiment. Anomalous broadening of the E_2g phonon mode is found all along Gamma-A. The dominant contribution to the linewidth is always the electron-phonon coupling.Comment: 4 pages, 3 figure

    Metals with Small Electron Mean-Free Path: Saturation versus Escalation of Resistivity

    Full text link
    Resistivity of metals is commonly observed either to 'escalate' beyond the Ioffe-Regel limit (mean free path l equal to lattice constant a) or to 'saturate' at this point. It is argued that neither behavior is well-understood, and that 'escalation' is not necessarily more mysterious than 'saturation.'Comment: 3 pages with 3 embedded figures. This article is intended for the Zacchary Fisk festschrift, which will be published in Physica

    Green Function Monte Carlo with Stochastic Reconfiguration: an effective remedy for the sign problem disease

    Full text link
    A recent technique, proposed to alleviate the ``sign problem disease'', is discussed in details. As well known the ground state of a given Hamiltonian HH can be obtained by applying the imaginary time propagator e−Hτe^{-H \tau} to a given trial state ψT\psi_T for large imaginary time τ\tau and sampling statistically the propagated state ψτ=e−HτψT \psi_{\tau} = e^{-H \tau} \psi_T. However the so called ``sign problem'' may appear in the simulation and such statistical propagation would be practically impossible without employing some approximation such as the well known ``fixed node'' approximation (FN). This method allows to improve the FN dynamic with a systematic correction scheme. This is possible by the simple requirement that, after a short imaginary time propagation via the FN dynamic, a number pp of correlation functions can be further constrained to be {\em exact} by small perturbation of the FN propagated state, which is free of the sign problem. By iterating this scheme the Monte Carlo average sign, which is almost zero when there is sign problem, remains stable and finite even for large τ\tau. The proposed algorithm is tested against the exact diagonalization results available on finite lattice. It is also shown in few test cases that the dependence of the results upon the few parameters entering the stochastic technique can be very easily controlled, unless for exceptional cases.Comment: 44 pages, RevTeX + 5 encaplulated postscript figure

    Stripes and spin-incommensurabilities are favored by lattice anisotropies

    Full text link
    Structural distortions in cuprate materials give a natural origin for anisotropies in electron properties. We study a modified one-band t-J model in which we allow for different hoppings and antiferromagnetic couplings in the two spatial directions (tx≠tyt_x \ne t_y and Jx≠JyJ_x \ne J_y). Incommensurate peaks in the spin structure factor show up only in the presence of a lattice anisotropy, whereas charge correlations, indicating enhanced fluctuations at incommensurate wave vectors, are almost unaffected with respect to the isotropic case.Comment: accepted for publication on Physical Review Letters, one color figur
    • …
    corecore