463 research outputs found
Films of Ni–7 at% V, Pd, Pt and Ta–Si–N as diffusion barriers for copper on Bi2Te3
Films of Ni–7 at% V, Pt, Pd, and Ta40Si14N46, each approximately 100 nm thick, were magnetron-deposited and interposed between about 250 nm thick copper overlayers and Bi2Te3 single-crystalline substrates. The samples were then annealed in vacuum up to 350 degrees C. The performance of the metal and the tantalum-silicon-nitride films as diffusion barriers for in-diffusion of Cu and out-diffusion of Bi and Te was evaluated by 2.0 MeV 4He backscattering spectrometry and x-ray diffraction. The Ni–7 at% V, Pd and Pt films all fail to prevent interdiffusion of Cu and Bi2Te3 after a few hours of annealing at 200 degrees C.
However, the Ta40Si14N46 barrier preserves the integrity of the contact after 250 degrees C for 50 h and 350 degrees C for 1 h anneals. These results confirm the superior characteristics of the metal-silicon-nitride films as diffusion barriers
Synthesis and characterization of attosecond light vortices in the extreme ultraviolet
Infrared and visible light beams carrying orbital angular momentum (OAM) are
currently thoroughly studied for their extremely broad applicative prospects,
among which are quantum information, micromachining and diagnostic tools. Here
we extend these prospects, presenting a comprehensive study for the synthesis
and full characterization of optical vortices carrying OAM in the extreme
ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond
infrared helically phased beam into its high-order harmonics, showing that each
harmonic order carries the total number of OAM units absorbed in the process up
to very high orders (57). This allows us to synthesize and characterize
helically shaped XUV trains of attosecond pulses. To demonstrate a typical use
of these new XUV light beams, we show our ability to generate and control,
through photoionization, attosecond electron beams carrying OAM. These
breakthroughs pave the route for the study of a series of fundamental phenomena
and the development of new ultrafast diagnosis tools using either photonic or
electronic vortices
Testing of Milliwatt Power Source Components
A milliwatt power source (MPS) has been developed to satisfy the requirements of several potential solar system exploration missions. The MPS is a small power source consisting of three major components: a space qualified heat source (RHU), a thermopile (thermoelectric converter or TEC) and a container to direct the RHU heat to the TEC. Thermopiles from Hi-Z Technology, Inc. of San Diego and the Institute of Thermoelectricity of Chernivtsi Ukraine suitable for the MPS were tested and shown to perform as expected, producing 40 mW of power with a temperature difference of about 170°C. Such thermopiles were successfully life tested for up to a year. A MPS container designed and built by Swales Aerospace was tested with both a TEC simulator and actual TEC. The Swales unit, tested under dynamic vacuum, provided less temperature difference than anticipated, such that the TEC produced 20 mW of power with heat input equivalent to a RHU
Probing single-photon ionization on the attosecond time scale
We study photoionization of argon atoms excited by attosecond pulses using an
interferometric measurement technique. We measure the difference in time delays
between electrons emitted from the and from the shell, at
different excitation energies ranging from 32 to 42 eV. The determination of
single photoemission time delays requires to take into account the measurement
process, involving the interaction with a probing infrared field. This
contribution can be estimated using an universal formula and is found to
account for a substantial fraction of the measured delay.Comment: 4 pages, 4 figures, under consideratio
Thermoelectric materials with filled skutterudite structure for thermoelectric devices
A class of thermoelectric compounds based on the skutterudite structure with heavy filling atoms in the empty octants and substituting transition metals and main-group atoms. High Seebeck coefficients and low thermal conductivities are achieved in combination with large electrical conductivities in these filled skutterudites for large ZT values. Substituting and filling methods are disclosed to synthesize skutterudite compositions with desired thermoelectric properties. A melting and/or sintering process in combination with powder metallurgy techniques is used to fabricate these new materials
Thermoelectric materials with filled skutterudite structure for thermoelectric devices
A class of thermoelectric compounds based on the skutterudite structure with heavy filling atoms in the empty octants and substituting transition metals and main-group atoms. High Seebeck coefficients and low thermal conductivities are achieved in combination with large electrical conductivities in these filled skutterudites for large ZT values. Substituting and filling methods are disclosed to synthesize skutterudite compositions with desired thermoelectric properties. A melting and/or sintering process in combination with powder metallurgy techniques is used to fabricate these new materials
Recommended from our members
Thermoelectric material development. Final report
A search was made for improved TE materials that could have higher efficiency than state-of-the-art SiGe alloys used in Radioisotope Thermoelectric Generators. A new family of materials having the skutterudite structure was identified (cubic space group Im3, formula (Fe, Co, Ni)As{sub 3}). Properties of n-type IrSb{sub 3}, CoSb{sub 3}, and their solid solutions were investigated. Pt, Te, Tl, and In were used as dopants. The thermal conductivity was reduced by about 70% for the solid solutions vs the binary compounds. A maximum ZT of about 0.36 was measured on Co-rich solid solutions which is 160% improved over that of the binary compounds
Skutterudites: An Update
Abstract Materials with the skutterudite crystal structure possess attractive transport properties and have a good potential for achieving ZT values substantially larger than for state-of-theart thermoelectric materials. Studies conducted at JPL on CoAs 3 , RhAs 3 , CoSb 3 , RhSb 3 and IrSb 3 have shown that ptype conductivity samples are characterized by carriers with low effective masses and very high mobilities, low electrical resistivities and moderate Seebeck coefficients. The carrier mobilities of n-type samples are about an order of magnitude lower, but low electrical resistivities and relatively large Seebeck coefficients can still be obtained at high doping levels. The room temperature lattice thermal conductivities of these binary skutterudites was found to be 7 to 10 times larger than that of Bi 2 Te 3 . This results in low ZT values at 300K, though very heavily doped n-type CoSb 3 samples can achieve ZT~1 at 600 o C. Several research groups, mostly in the U.S., are now working on understanding and optimizing the transport properties of skutterudites. Most of the efforts are focusing on reducing the lattice thermal conductivity by filling the empty octant cages in the skutterudite structure with rare earth atoms. Additional approaches have also been pursued at JPL, in particular the formation of solid solutions and alloys, and the study of novel ternary skutterudite compounds. Recent experiments have demonstrated that ternary compounds such as Ru 0.5 Pd 0.5 Sb 3 and filled skutterudites such as CeFe 4 Sb 12 had much lower lattice thermal conductivity. High ZT values have been obtained for several filled skutterudites in the 500-700 o C temperature range, but figures of merit at 300K are still low. This paper reviews recent experimental and theoretical results on skutterudites with a particular emphasis on the transport properties of ternary compounds and filled compositions. The latest results obtained at JPL are presented and the possibility of obtaining high ZT values near room temperature is discussed
- …