63 research outputs found
Defect-induced helicity-dependent terahertz emission in Dirac semimetal PtTe2 thin films
Nonlinear transport enabled by symmetry breaking in quantum materials has
aroused considerable interest in condensed matter physics and interdisciplinary
electronics. However, the nonlinear optical response in centrosymmetric Dirac
semimetals via the defect engineering has remained highly challenging. Here, we
observe the helicity-dependent terahertz (THz) emission in Dirac semimetal
PtTe2 thin films via circular photogalvanic effect (CPGE) under normal
incidence. This is activated by artificially controllable out-of-plane
Te-vacancy defect gradient, which is unambiguously evidenced by the electron
ptychography. The defect gradient lowers the symmetry, which not only induces
the band spin splitting, but also generates the giant Berry curvature dipole
(BCD) responsible for the CPGE. Such BCD-induced helicity-dependent THz
emission can be manipulated by the Te-vacancy defect concentration.
Furthermore, temperature evolution of the THz emission features the minimum of
the THz amplitude due to the carrier compensation. Our work provides a
universal strategy for symmetry breaking in centrosymmetric Dirac materials for
efficient nonlinear transport and facilitates the promising device applications
in integrated optoelectronics and spintronics.Comment: 27 pages, 5 figure
Terahertz Spin Current Dynamics in Antiferromagnetic Hematite
An important vision of modern magnetic research is to use antiferromagnets (AFMs) as controllable and active ultrafast components in spintronic devices. Hematite (α-Fe2O3) is a promising model material in this respect because its pronounced Dzyaloshinskii-Moriya interaction leads to the coexistence of antiferromagnetism and weak ferromagnetism. Here, femtosecond laser pulses are used to drive terahertz (THz) spin currents from α-Fe2O3 into an adjacent Pt layer. Two contributions to the generation of the spin current with distinctly different dynamics are found: the impulsive stimulated Raman scatting that relies on the AFM order and the ultrafast spin Seebeck effect that relies on the net magnetization. The total THz spin current dynamics can be manipulated by a medium-strength magnetic field below 1 T. The control of the THz spin current achieved in α-Fe2O3 opens the pathway toward tailoring the exact spin current dynamics from ultrafast AFM spin sources
Novel, high-yield red blood cell production methods from CD34-positive cells derived from human embryonic stem, yolk sac, fetal liver, cord blood, and peripheral blood
The current supply of red blood cells expressing rare blood groups is not sufficient to cover all the existing transfusion needs for chronically transfused patients, such as sickle cell disease homozygous carriers, because of alloimmunization. In vitro production of cultured red blood cells is slowly emerging as a possible complement to the existing collection-based red blood cell procurement system. The yield of cultured red blood cells can theoretically be maximized by amplifying the stem, progenitor, or precursor compartment. Here, we combined methods designed to expand these three compartments to optimize the yield of cultured red blood cells and found that exposing CD34+ cells to a short pulse of cytokines favorable for erythroid differentiation prior to stem cell expansion followed by progenitor expansion produced the highest yield of erythroid cells. This novel serum-free red blood cell production protocol was efficient on CD34+ cells derived from human embryonic stem cells, 6–8-week yolk sacs, 16–18-week fetal livers, cord blood, and peripheral blood. The yields of cells obtained with these new protocols were larger by an order of magnitude than the yields observed previously. Globin expression analysis by high-performance liquid chromatography revealed that these expansion protocols generally yielded red blood cells that expressed a globin profile similar to that expected for the developmental age of the CD34+ cells
Multifunctional chiral metamaterials: Multiplexing holograms and switching chirality
We use chirality to realize metamaterials with multiple independent functionalities, including independent holograms for circularly polarized waves of opposite handedness, switching directionally asymmetric transmission and chirality on/off, and normal mirror to chiral mirror transformation
The Creep-Sliding Deformation Mechanism of the Jiaju Ancient Landslide in the Upstream of Dadu River, Tibetan Plateau, China
The Jiaju ancient landslide is a giant landslide located upstream of the Dadu River, eastern Tibetan Plateau, with a volume of approx. 7.04 × 108 m3. The Jiaju ancient landslide is complex and comprises five secondary sliding bodies, e.g., the Jiaju landslide (H01), Niexiaping landslide (H02), Xiaobawang landslide (H03), Niela landslide (H04), and Mt.-peak landslide (H05). Affected by regional neotectonic movement, heavy rainfall, river erosion, and lithology, the secondary sliding bodies of the Jiaju ancient landslide are undergoing significantly different creep-sliding deformation, which will cause great damage to villages, roads, and rivers around the sliding bodies. Combined with the SBAS-InSAR method, Sentinel-1A data from June 2018 to August 2021, remote sensing and field surveys, this study obtained the Jiaju ancient landslide deformation characteristics and deformation rate in the line-of-sight direction (VLOS), slope (VSlope), and vertical (VVertical). It is concluded that the maximum deformation rate of the Jiaju ancient landslide is significant. The maximum of VLOS, VSlope, and VVertical are −179 mm/a, −211 mm/a, and −67 mm/a, respectively. The Niela landslide (H04), Jiaju landslide (H01), and Mt.-peak landslide (H05) are very large and suffer strong deformation. Among these, the Niela landslide (H04) is in the accelerative deformation stage and at the Warn warning level, and the Jiaju landslide (H01) is in the creep deformation and attention warning level, especially heavy rainfall, which will accelerate landslide deformation and trigger reactivation. Because the geological structure is very complex for the Jiaju ancient landslide and strong neotectonic movement, under heavy rainfall, the secondary landslide creep-sliding rate of the Jiaju ancient landslide is easily accelerated and finally slides in part or as a whole, resulting in river blocking. It is suggested to strengthen the landslide deformation monitoring of the Niela landslide and Jiaju landslide and provide disaster mitigation and prevention support to the government and residents along the Dadu River watershed
Small Molecule Inhibitors as Therapeutic Agents Targeting Oncogenic Fusion Proteins: Current Status and Clinical
Oncogenic fusion proteins, arising from chromosomal rearrangements, have emerged as prominent drivers of tumorigenesis and crucial therapeutic targets in cancer research. In recent years, the potential of small molecular inhibitors in selectively targeting fusion proteins has exhibited significant prospects, offering a novel approach to combat malignancies harboring these aberrant molecular entities. This review provides a comprehensive overview of the current state of small molecular inhibitors as therapeutic agents for oncogenic fusion proteins. We discuss the rationale for targeting fusion proteins, elucidate the mechanism of action of inhibitors, assess the challenges associated with their utilization, and provide a summary of the clinical progress achieved thus far. The objective is to provide the medicinal community with current and pertinent information and to expedite the drug discovery programs in this area
Large-scale production of embryonic red blood cells from human embryonic stem cells
Objective<p></p>
To develop a method to produce in culture large number of erythroid cells from human embryonic stem cells.<p></p>
Materials and Methods<p></p>
Human H1 embryonic stem cells were differentiated into hematopoietic cells by coculture with a human fetal liver cell line, and the resulting CD34-positive cells were expanded in vitro in liquid culture using a three-step method. The erythroid cells produced were then analyzed by light microscopy and flow cytometry. Globin expression was characterized by quantitative reverse-transcriptase polymerase chain reaction and by high-performance liquid chromatography.<p></p>
Results<p></p>
CD34-positive cells produced from human embryonic stem cells could be efficiently differentiated into erythroid cells in liquid culture leading to a more than 5000-fold increase in cell number. The erythroid cells produced are similar to primitive erythroid cells present in the yolk sac of early human embryos and did not enucleate. They are fully hemoglobinized and express a mixture of embryonic and fetal globins but no β-globin.<p></p>
Conclusions<p></p>
We have developed an experimental protocol to produce large numbers of primitive erythroid cells starting from undifferentiated human embryonic stem cells. As the earliest human erythroid cells, the nucleated primitive erythroblasts, are not very well characterized because experimental material at this stage of development is very difficult to obtain, this system should prove useful to answer a number of experimental questions regarding the biology of these cells. In addition, production of mature red blood cells from human embryonic stem cells is of great potential practical importance because it could eventually become an alternate source of cell for transfusion
Continuous Spinning of High‐Tough Hydrogel Fibers for Flexible Electronics by Using Regional Heterogeneous Polymerization
Abstract Hydrogel fibers have attracted substantial interest for application in flexible electronics due to their ionic conductivity, high specific surface area, and ease of constructing multidimensional structures. However, universal continuous spinning methods for hydrogel fibers are yet lacking. Based on the hydrophobic mold induced regional heterogeneous polymerization, a universal self‐lubricating spinning (SLS) strategy for the continuous fabrication of hydrogel fibers from monomers is developed. The universality of the SLS strategy is demonstrated by the successful spinning of 10 vinyl monomer‐based hydrogel fibers. Benefiting from the universality of the SLS strategy, the SLS strategy can be combined with pre‐gel design and post‐treatment toughening to prepare highly entangled polyacrylamide (PAM) and ionic crosslinked poly(acrylamide‐co‐acrylic acid)/Fe3+ (W‐PAMAA/Fe3+) hydrogel fibers, respectively. In particular, the W‐PAMAA/Fe3+ hydrogel fiber exhibited excellent mechanical properties (tensile stress > 4 MPa, tensile strain > 400%) even after 120 days of swelling in the pH of 3–9. Furthermore, owing to the excellent multi‐faceted performance and one‐dimensionality of W‐PAMAA/Fe3+ hydrogel fibers, flexible sensors with different dimensions and functions can be constructed bottom‐up, including the one‐dimensional (1D) strain sensor, two‐dimensional (2D) direction sensor, three‐dimensional (3D) pressure sensor, and underwater communication sensor to present the great potential of hydrogel fibers in flexible electronics
Effects of Different Concentrations of Micro-Nano Bubbles on Grain Yield and Nitrogen Absorption and Utilization of Double Cropping Rice in South China
Micro-nano bubble (MNB) irrigation can effectively improve the hypoxia stress caused by conventional irrigation and shows great potential in plant development, yield improvement, and saving of water and fertilizer, and has been recognized as a new and high-efficiency technology in crop planting. However, former research on MNB concentration had no clear segmentation, and other MNB concentrations can achieve better or worse effects. This remains to be further explored in order to explore the optimal concentration of MNBs for the yield and nitrogen absorption and utilization of the double cropping rice. With early rice Ganxin203 and late rice WufengyouT025 as the experimental cultivars, the effects of MNBs on growth, yield, and nitrogen absorption and utilization of the potted double cropping rice were analyzed by setting three concentrations of MNBs (LM, low concentration; MM, middle concentration; HM, high concentration), compared with the ordinary running water (CK). Compared with CK, grain yield of the early rice under the MNB treatment increased by 4.84~10.95% and the late rice increased by 6.10~14.31%. It was found that the higher the concentration of the MNBs, the higher the yield of the rice. This is due to that the MNBs improved the tiller-bearing rate, increased the SPAD and Pn values of the flag leaves in the whole growth period, slowed down the drop of the leaf SPAD and Pn from heading stage to maturity, increased the number of the adventitious roots, improved the α-NA oxidation of the root, and simultaneously promoted the nitrogen accumulation, absorption, and utilization. The HM treatment obtained the best benefits, and the effect of the MNBs on the late rice was better than the early rice
- …