19 research outputs found

    The Glauber model and the heavy ion reaction cross section

    Get PDF
    We reexamine the Glauber model and calculate the total reaction cross section as a function of energy in the low and intermediate energy range, where many of the corrections in the model, are effective. The most significant effect in this energy range is by the modification of the trajectory due to the Coulomb field. The modification in the trajectory due to nuclear field is also taken into account in a self consistent way. The energy ranges in which particular corrections are effective, are quantified and it is found that when the center of mass energy of the system becomes 30 times the Coulomb barrier, none of the trajectory modification to the Glauber model is really required. The reaction cross sections for light and heavy systems, right from near coulomb barrier to intermediate energies have been calculated. The exact nuclear densities and free nucleon-nucleon (NN) cross sections have been used in the calculations. The center of mass correction which is important for light systems, has also been taken into account. There is an excellent agreement between the calculations with the modified Glauber model and the experimental data. This suggests that the heavy ion reactions in this energy range can be explained by the Glauber model in terms of free NN cross sections without incorporating any medium modification.Comment: RevTeX, 21 pages including 9 Postscript figures, submitted to Phys. Rev.

    Strange Hadron Production in d+Au Collisions at RHIC

    No full text

    Influence of thermal neutron scattering effect of FLiBe molten salt on neutronic performance of molten salt reactors

    No full text
    BackgroundFLiBe is commonly used as the coolant and carrier salt in liquid molten salt reactors (MSRs). Its certain moderating properties and thermal neutron scattering attributes affect the neutronic performance of the MSR, and this in turn influences the physical design and safe operation of the reactor. Consequently, studying FLiBe's thermal neutron scattering data is essential for MSRs.PurposeThis study aims to analyze the influence of of FLiBe thermal neutron scattering on neutronic performances of a 65-MW MSR.MethodsFirst, according to the requirements, a core model of a 65-MW MSR was established by using the general Monte Carlo procedure. Then, the neutronics performance of the MSR was calculated by considering the scattering cross-section of the free gas model and FLiBe thermal neutron scattering data (e.g., the neutron spectrum, effective multiplication factor, and nuclide reactivity rate). Finally, the changes in the influence of FLiBe thermal neutron scattering effect on neutronic properties under different energy spectra were compared.ResultsThe computation results show that, by considering the thermal scattering effect of FLiBe molten salt, the neutron energy spectrum in the core of the MSR becomes harder, 235U fission rate decreases, the keff value of the reactor decreases, but the density coefficient in the temperature reaction coefficient of the fuel keeps almost unchanged, and the Doppler coefficient decreases by 0.28Ă—10-5 K-1. With the hardening of the energy spectrum, the variation in the 235U fission rate reduction decreases, and the decrease in keff caused by thermal neutron scattering changs from 9.2Ă—10-4 to 2Ă—10-4.ConclusionsTherefore, it is necessary to incorporate FliBe's thermal neutron scattering data into the physical calculations for the MSR core

    Pore Scale Thermal Hydraulics Investigations of Molten Salt Cooled Pebble Bed High Temperature Reactor with BCC and FCC Configurations

    No full text
    The present paper systematically investigated pore scale thermal hydraulics characteristics of molten salt cooled high temperature pebble bed reactor. By using computational fluid dynamics (CFD) methods and employing simplified body center cubic (BCC) and face center cubic (FCC) model, pressure drop and local mean Nusselt number are calculated. The simulation result shows that the high Prandtl number molten salt in packed bed has unique fluid-dynamics and thermodynamic properties. There are divergences between CFD results and empirical correlations’ predictions of pressure drop and local Nusselt numbers. Local pebble surface temperature distributions in several default conditions are investigated. Thermal removal capacities of molten salt are confirmed in the case of nominal condition; the pebble surface temperature under the condition of local power distortion shows the tolerance of pebble in extreme neutron dose exposure. The numerical experiments of local pebble insufficient cooling indicate that in the molten salt cooled pebble bed reactor, the pebble surface temperature is not very sensitive to loss of partial coolant. The methods and results of this paper would be useful for optimum designs and safety analysis of molten salt cooled pebble bed reactors

    Effect of FLiBe thermal neutron scattering on reactivity of molten salt reactor

    Get PDF
    Thermal neutron scattering data has an important influence on the calculation and design of reactor with a thermal spectrum. However, as the only liquid fuel in the Gen-IV reactor candidates, the research on the thermal neutron scattering effect of coolant and somewhat moderator FLiBe has not been carried out sufficiently either experimentally or theoretically. The effect of FLiBe thermal neutron scattering on reactivity of TMSR-LF (thorium molten salt reactor - liquid fuel), TMSR-SF (thorium molten salt reactor - solid fuel) and MSRE (molten salt reactor experiment) were investigated and compared. Results show that the effect of FLiBe thermal neutron scattering on reactivity depends to some extent on the fuel-graphite volume ratio of core. Calculations indicate that FLiBe thermal neutron scattering of MSRE (with the hardest spectrum) has the minimum effect of 41 pcm on reactivity, and FLiBe thermal neutron scattering of TMSR-SF (with the softest spectrum) has the maximum effect of -94 pcm on reactivity, and FLiBe thermal neutron scattering of TMSR-LF has an effect of -61 pcm on reactivity at 900 K

    Effect of FLiBe thermal neutron scattering on reactivity of molten salt reactor

    No full text
    Thermal neutron scattering data has an important influence on the calculation and design of reactor with a thermal spectrum. However, as the only liquid fuel in the Gen-IV reactor candidates, the research on the thermal neutron scattering effect of coolant and somewhat moderator FLiBe has not been carried out sufficiently either experimentally or theoretically. The effect of FLiBe thermal neutron scattering on reactivity of TMSR-LF (thorium molten salt reactor - liquid fuel), TMSR-SF (thorium molten salt reactor - solid fuel) and MSRE (molten salt reactor experiment) were investigated and compared. Results show that the effect of FLiBe thermal neutron scattering on reactivity depends to some extent on the fuel-graphite volume ratio of core. Calculations indicate that FLiBe thermal neutron scattering of MSRE (with the hardest spectrum) has the minimum effect of 41 pcm on reactivity, and FLiBe thermal neutron scattering of TMSR-SF (with the softest spectrum) has the maximum effect of -94 pcm on reactivity, and FLiBe thermal neutron scattering of TMSR-LF has an effect of -61 pcm on reactivity at 900 K

    A Review of Molten Salt Reactor Multi-Physics Coupling Models and Development Prospects

    No full text
    Molten salt reactors (MSRs) are one type of GEN-IV advanced reactors that adopt melt mixtures of heavy metal elements and molten salt as both fuel and coolant. The liquid fuel allows MSRs to perform online refueling, reprocessing, and helium bubbling. The fuel utilization, safety, and economics can be enhanced, while some new physical mechanisms and phenomena emerge simultaneously, which would significantly complicate the numerical simulation of MSRs. The dual roles of molten fuel salt in the core lead to a tighter coupling of physical mechanisms since the released fission energy will be absorbed immediately by the molten salt itself and then transferred to the primary heat exchanger. The modeling of multi-physics coupling is regarded as one important aspect of MSR study, attracting growing attention worldwide. Up to now, great efforts have been made in the development of MSR multi-physics coupling models over the past 60 years, especially after 2000, when MSR was selected for one of the GEN-IV advanced reactors. In this paper, the development status of the MSR multi-physics coupling model is extensively reviewed in the light of coupling models of N-TH (neutronics and thermal hydraulics), N-TH-BN (neutronics, thermal hydraulics, and burnup) and N-TH-BN-G (neutronics, thermal hydraulics, burnup, and graphite deformation). The problems, challenges, and development trends are outlined to provide a basis for the future development of MSR multi-physics coupling models

    The Combined Use of Medium- and Short-Chain Fatty Acids Improves the Pregnancy Outcomes of Sows by Enhancing Ovarian Steroidogenesis and Endometrial Receptivity

    No full text
    Fatty acids play important roles in maintaining ovarian steroidogenesis and endometrial receptivity. Porcine primary ovarian granulosa cells (PGCs) and endometrial epithelial cells (PEECs) were treated with or without medium- and short-chain fatty acids (MSFAs) for 24 h. The mRNA abundance of genes was detected by fluorescence quantitative PCR. The hormone levels in the PGCs supernatant and the rate of adhesion of porcine trophoblast cells (pTrs) to PEECs were measured. Sows were fed diets with or without MSFAs supplementation during early gestation. The fecal and vaginal microbiomes were identified using 16S sequencing. Reproductive performance was recorded at parturition. MSFAs increased the mRNA abundance of genes involved in steroidogenesis, luteinization in PGCs and endometrial receptivity in PEECs (p < 0.05). The estrogen level in the PGC supernatant and the rate of adhesion increased (p < 0.05). Dietary supplementation with MSFAs increased serum estrogen levels and the total number of live piglets per litter (p < 0.01). Moreover, MSFAs reduced the fecal Trueperella abundance and vaginal Escherichia-Shigella and Clostridium_sensu_stricto_1 abundance. These data revealed that MSFAs improved pregnancy outcomes in sows by enhancing ovarian steroidogenesis and endometrial receptivity while limiting the abundance of several intestinal and vaginal pathogens at early stages of pregnancy
    corecore