674 research outputs found

    Thromboprophylaxis Is Associated With Reduced Post-hospitalization Venous Thromboembolic Events in Patients With Inflammatory Bowel Diseases

    Get PDF
    Background & Aims Patients with inflammatory bowel diseases (IBDs) have increased risk for venous thromboembolism (VTE); those who require hospitalization have particularly high risk. Few hospitalized patients with IBD receive thromboprophylaxis. We analyzed the frequency of VTE after IBD-related hospitalization, risk factors for post-hospitalization VTE, and the efficacy of prophylaxis in preventing post-hospitalization VTE. Methods In a retrospective study, we analyzed data from a multi-institutional cohort of patients with Crohn's disease or ulcerative colitis and at least 1 IBD-related hospitalization. Our primary outcome was a VTE event. All patients contributed person-time from the date of the index hospitalization to development of VTE, subsequent hospitalization, or end of follow-up. Our main predictor variable was pharmacologic thromboprophylaxis. Cox proportional hazard models adjusting for potential confounders were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Results From a cohort of 2788 patients with at least 1 IBD-related hospitalization, 62 patients developed VTE after discharge (2%). Incidences of VTE at 30, 60, 90, and 180 days after the index hospitalization were 3.7/1000, 4.1/1000, 5.4/1000, and 9.4/1000 person-days, respectively. Pharmacologic thromboprophylaxis during the index hospital stay was associated with a significantly lower risk of post-hospitalization VTE (HR, 0.46; 95% CI, 0.22–0.97). Increased numbers of comorbidities (HR, 1.30; 95% CI, 1.16–1.47) and need for corticosteroids before hospitalization (HR, 1.71; 95% CI, 1.02–2.87) were also independently associated with risk of VTE. Length of hospitalization or surgery during index hospitalization was not associated with post-hospitalization VTE. Conclusions Pharmacologic thromboprophylaxis during IBD-related hospitalization is associated with reduced risk of post-hospitalization VTE.National Institutes of Health (U.S.) (U54-LM008748

    Evidence and Ideology in Macroeconomics: The Case of Investment Cycles

    Get PDF
    The paper reports the principal findings of a long term research project on the description and explanation of business cycles. The research strongly confirmed the older view that business cycles have large systematic components that take the form of investment cycles. These quasi-periodic movements can be represented as low order, stochastic, dynamic processes with complex eigenvalues. Specifically, there is a fixed investment cycle of about 8 years and an inventory cycle of about 4 years. Maximum entropy spectral analysis was employed for the description of the cycles and continuous time econometrics for the explanatory models. The central explanatory mechanism is the second order accelerator, which incorporates adjustment costs both in relation to the capital stock and the rate of investment. By means of parametric resonance it was possible to show, both theoretically and empirically how cycles aggregate from the micro to the macro level. The same mathematical tool was also used to explain the international convergence of cycles. I argue that the theory of investment cycles was abandoned for ideological, not for evidential reasons. Methodological issues are also discussed

    Methods to Develop an Electronic Medical Record Phenotype Algorithm to Compare the Risk of Coronary Artery Disease across 3 Chronic Disease Cohorts

    Get PDF
    Background Typically, algorithms to classify phenotypes using electronic medical record (EMR) data were developed to perform well in a specific patient population. There is increasing interest in analyses which can allow study of a specific outcome across different diseases. Such a study in the EMR would require an algorithm that can be applied across different patient populations. Our objectives were: (1) to develop an algorithm that would enable the study of coronary artery disease (CAD) across diverse patient populations; (2) to study the impact of adding narrative data extracted using natural language processing (NLP) in the algorithm. Additionally, we demonstrate how to implement CAD algorithm to compare risk across 3 chronic diseases in a preliminary study. Methods and Results We studied 3 established EMR based patient cohorts: diabetes mellitus (DM, n = 65,099), inflammatory bowel disease (IBD, n = 10,974), and rheumatoid arthritis (RA, n = 4,453) from two large academic centers. We developed a CAD algorithm using NLP in addition to structured data (e.g. ICD9 codes) in the RA cohort and validated it in the DM and IBD cohorts. The CAD algorithm using NLP in addition to structured data achieved specificity >95% with a positive predictive value (PPV) 90% in the training (RA) and validation sets (IBD and DM). The addition of NLP data improved the sensitivity for all cohorts, classifying an additional 17% of CAD subjects in IBD and 10% in DM while maintaining PPV of 90%. The algorithm classified 16,488 DM (26.1%), 457 IBD (4.2%), and 245 RA (5.0%) with CAD. In a cross-sectional analysis, CAD risk was 63% lower in RA and 68% lower in IBD compared to DM (p<0.0001) after adjusting for traditional cardiovascular risk factors. Conclusions We developed and validated a CAD algorithm that performed well across diverse patient populations. The addition of NLP into the CAD algorithm improved the sensitivity of the algorithm, particularly in cohorts where the prevalence of CAD was low. Preliminary data suggest that CAD risk was significantly lower in RA and IBD compared to DM.National Institutes of Health (U.S.). Informatics for Integrating Biology and the Bedside Project (U54LM008748

    Modeling Disease Severity in Multiple Sclerosis Using Electronic Health Records

    Get PDF
    Objective: To optimally leverage the scalability and unique features of the electronic health records (EHR) for research that would ultimately improve patient care, we need to accurately identify patients and extract clinically meaningful measures. Using multiple sclerosis (MS) as a proof of principle, we showcased how to leverage routinely collected EHR data to identify patients with a complex neurological disorder and derive an important surrogate measure of disease severity heretofore only available in research settings. Methods: In a cross-sectional observational study, 5,495 MS patients were identified from the EHR systems of two major referral hospitals using an algorithm that includes codified and narrative information extracted using natural language processing. In the subset of patients who receive neurological care at a MS Center where disease measures have been collected, we used routinely collected EHR data to extract two aggregate indicators of MS severity of clinical relevance multiple sclerosis severity score (MSSS) and brain parenchymal fraction (BPF, a measure of whole brain volume). Results: The EHR algorithm that identifies MS patients has an area under the curve of 0.958, 83% sensitivity, 92% positive predictive value, and 89% negative predictive value when a 95% specificity threshold is used. The correlation between EHR-derived and true MSSS has a mean R[superscript 2] = 0.38±0.05, and that between EHR-derived and true BPF has a mean R[superscript 2] = 0.22±0.08. To illustrate its clinical relevance, derived MSSS captures the expected difference in disease severity between relapsing-remitting and progressive MS patients after adjusting for sex, age of symptom onset and disease duration (p = 1.56×10[superscript −12]). Conclusion: Incorporation of sophisticated codified and narrative EHR data accurately identifies MS patients and provides estimation of a well-accepted indicator of MS severity that is widely used in research settings but not part of the routine medical records. Similar approaches could be applied to other complex neurological disorders.National Institute of General Medical Sciences (U.S.) (NIH U54-LM008748

    Better Together: Engaging Stakeholders in Learning and Leadership to Guide Foundation Resources Toward Adaptive Systems Change

    Get PDF
    In 2014, the Kansas Health Foundation brought together a group of knowledgeable stakeholders from a multitude of specialties to focus on reducing tobacco use specifically among Kansans with mental illness. Over 15 months, the group and the foundation worked to learn deeply about the issue and inform action that could be taken on individual, organizational, and systemic levels. The wealth of knowledge and experience brought by each participant to the discussion and learning about this complex issue, together from a range of perspectives, resulted in a more productive dialogue. The model proved very effective, as evidenced by the group’s success in achieving a number of policy, system, and environmental changes — including expanding cessation benefits available under Medicaid in Kansas — and could be replicated by any foundation. The foundation continues to work collaboratively on this issue and discover more about what is effective in reducing tobacco use. What it learned alongside its community partners has powerfully informed the foundation’s approach to this work and has resulted in meaningful change, at multiple levels, in the behavioral health system

    Normalization of Plasma 25-Hydroxy Vitamin D Is Associated with Reduced Risk of Surgery in Crohn’s Disease

    Get PDF
    available in PMC 2014 August 01AB Background: Vitamin D may have an immunologic role in Crohn's disease (CD) and ulcerative colitis (UC). Retrospective studies suggested a weak association between vitamin D status and disease activity but have significant limitations. Methods: Using a multi-institution inflammatory bowel disease cohort, we identified all patients with CD and UC who had at least one measured plasma 25-hydroxy vitamin D (25(OH)D). Plasma 25(OH)D was considered sufficient at levels >=30 ng/mL. Logistic regression models adjusting for potential confounders were used to identify impact of measured plasma 25(OH)D on subsequent risk of inflammatory bowel disease-related surgery or hospitalization. In a subset of patients where multiple measures of 25(OH)D were available, we examined impact of normalization of vitamin D status on study outcomes. Results: Our study included 3217 patients (55% CD; mean age, 49 yr). The median lowest plasma 25(OH)D was 26 ng/mL (interquartile range, 17-35 ng/mL). In CD, on multivariable analysis, plasma 25(OH)D =30 ng/mL. Similar estimates were also seen for UC. Furthermore, patients with CD who had initial levels <30 ng/mL but subsequently normalized their 25(OH)D had a reduced likelihood of surgery (odds ratio, 0.56; 95% confidence interval, 0.32-0.98) compared with those who remained deficient. Conclusion: Low plasma 25(OH)D is associated with increased risk of surgery and hospitalizations in both CD and UC, and normalization of 25(OH)D status is associated with a reduction in the risk of CD-related surgery. (C) Crohn's & Colitis Foundation of America, Inc

    Breaks and the Statistical Process of Inflation:The Case of Estimating the ‘Modern’ Long-Run Phillips Curve*

    Get PDF
    ‘Modern’ theories of the Phillips curve inadvertently imply that inflation is an integrated or near integrated process but this implication is strongly rejected using United States data. Alternatively, if we assume that inflation is a stationary process around a shifting mean (due to changes in monetary policy) then any estimate of long-run relationships in the data will suffer from a ‘small-sample’ problem as there are too few stationary inflation ‘regimes’. Using the extensive literature on identification of structural breaks we identify inflation regimes which are used in turn to estimate with panel data techniques the United States long-run Phillips curve

    Emergent Systems Energy Laws for Predicting Myosin Ensemble Processivity

    Get PDF
    In complex systems with stochastic components, systems laws often emerge that describe higher level behavior regardless of lower level component configurations. In this paper, emergent laws for describing mechanochemical systems are investigated for processive myosin-actin motility systems. On the basis of prior experimental evidence that longer processive lifetimes are enabled by larger myosin ensembles, it is hypothesized that emergent scaling laws could coincide with myosin-actin contact probability or system energy consumption. Because processivity is difficult to predict analytically and measure experimentally, agent-based computational techniques are developed to simulate processive myosin ensembles and produce novel processive lifetime measurements. It is demonstrated that only systems energy relationships hold regardless of isoform configurations or ensemble size, and a unified expression for predicting processive lifetime is revealed. The finding of such laws provides insight for how patterns emerge in stochastic mechanochemical systems, while also informing understanding and engineering of complex biological systems

    Integrated computational and Drosophila cancer model platform captures previously unappreciated chemicals perturbing a kinase network

    Get PDF
    Drosophila provides an inexpensive and quantitative platform for measuring whole animal drug response. A complementary approach is virtual screening, where chemical libraries can be efficiently screened against protein target(s). Here, we present a unique discovery platform integrating structure-based modeling with Drosophila biology and organic synthesis. We demonstrate this platform by developing chemicals targeting a Drosophila model of Medullary Thyroid Cancer (MTC) characterized by a transformation network activated by oncogenic dRetM955T. Structural models for kinases relevant to MTC were generated for virtual screening to identify unique preliminary hits that suppressed dRetM955T-induced transformation. We then combined features from our hits with those of known inhibitors to create a ‘hybrid’ molecule with improved suppression of dRetM955T transformation. Our platform provides a framework to efficiently explore novel kinase inhibitors outside of explored inhibitor chemical space that are effective in inhibiting cancer networks while minimizing whole body toxicity
    corecore