279 research outputs found
Proposal for SPS beam time for the baby MIND and TASD neutrino detector prototypes
The design, construction and testing of neutrino detector prototypes at CERN
are ongoing activities. This document reports on the design of solid state baby
MIND and TASD detector prototypes and outlines requirements for a test beam at
CERN to test these, tentatively planned on the H8 beamline in the North Area,
which is equipped with a large aperture magnet. The current proposal is
submitted to be considered in light of the recently approved projects related
to neutrino activities with the SPS in the North Area in the medium term
2015-2020
Internal alignment and position resolution of the silicon tracker of DAMPE determined with orbit data
The DArk Matter Particle Explorer (DAMPE) is a space-borne particle detector
designed to probe electrons and gamma-rays in the few GeV to 10 TeV energy
range, as well as cosmic-ray proton and nuclei components between 10 GeV and
100 TeV. The silicon-tungsten tracker-converter is a crucial component of
DAMPE. It allows the direction of incoming photons converting into
electron-positron pairs to be estimated, and the trajectory and charge (Z) of
cosmic-ray particles to be identified. It consists of 768 silicon micro-strip
sensors assembled in 6 double layers with a total active area of 6.6 m.
Silicon planes are interleaved with three layers of tungsten plates, resulting
in about one radiation length of material in the tracker. Internal alignment
parameters of the tracker have been determined on orbit, with non-showering
protons and helium nuclei. We describe the alignment procedure and present the
position resolution and alignment stability measurements
Baby MIND: A magnetised spectrometer for the WAGASCI experiment
The WAGASCI experiment being built at the J-PARC neutrino beam line will
measure the difference in cross sections from neutrinos interacting with a
water and scintillator targets, in order to constrain neutrino cross sections,
essential for the T2K neutrino oscillation measurements. A prototype Magnetised
Iron Neutrino Detector (MIND), called Baby MIND, is being constructed at CERN
to act as a magnetic spectrometer behind the main WAGASCI target to be able to
measure the charge and momentum of the outgoing muon from neutrino charged
current interactions.Comment: Poster presented at NuPhys2016 (London, 12-14 December 2016). Title +
4 pages, LaTeX, 6 figure
A PMT-Block test bench
The front-end electronics of the ATLAS hadronic calorimeter (Tile Cal) is
housed in a unit, called {\it PMT-Block}. The PMT-Block is a compact instrument
comprising a light mixer, a PMT together with its divider and a {\it 3-in-1}
card, which provides shaping, amplification and integration for the signals.
This instrument needs to be qualified before being assembled on the detector. A
PMT-Block test bench has been developed for this purpose. This test bench is a
system which allows fast, albeit accurate enough, measurements of the main
properties of a complete PMT-Block. The system, both hardware and software, and
the protocol used for the PMT-Blocks characterisation are described in detail
in this report. The results obtained in the test of about 10000 PMT-Blocks
needed for the instrumentation of the ATLAS (LHC-CERN) hadronic Tile
Calorimeter are also reported.Comment: 23 pages, 10 figure
Baby MIND Experiment Construction Status
Baby MIND is a magnetized iron neutrino detector, with novel design features,
and is planned to serve as a downstream magnetized muon spectrometer for the
WAGASCI experiment on the T2K neutrino beam line in Japan. One of the main
goals of this experiment is to reduce systematic uncertainties relevant to
CP-violation searches, by measuring the neutrino contamination in the
anti-neutrino beam mode of T2K. Baby MIND is currently being constructed at
CERN, and is planned to be operational in Japan in October 2017.Comment: Poster presented at NuPhys2016 (London, 12-14 December 2016). 4
pages, LaTeX, 7 figure
Baby MIND: A magnetized segmented neutrino detector for the WAGASCI experiment
T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan
designed to study various parameters of neutrino oscillations. A near detector
complex (ND280) is located 280~m downstream of the production target and
measures neutrino beam parameters before any oscillations occur. ND280's
measurements are used to predict the number and spectra of neutrinos in the
Super-Kamiokande detector at the distance of 295~km. The difference in the
target material between the far (water) and near (scintillator, hydrocarbon)
detectors leads to the main non-cancelling systematic uncertainty for the
oscillation analysis. In order to reduce this uncertainty a new
WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized
iron neutrino detector (Baby MIND) will be used to measure momentum and charge
identification of the outgoing muons from charged current interactions. The
Baby MIND modules are composed of magnetized iron plates and long plastic
scintillator bars read out at the both ends with wavelength shifting fibers and
silicon photomultipliers. The front-end electronics board has been developed to
perform the readout and digitization of the signals from the scintillator bars.
Detector elements were tested with cosmic rays and in the PS beam at CERN. The
obtained results are presented in this paper.Comment: In new version: modified both plots of Fig.1 and added one sentence
in the introduction part explaining Baby MIND role in WAGASCI experiment,
added information for the affiliation
MICE: the Muon Ionization Cooling Experiment. Step I: First Measurement of Emittance with Particle Physics Detectors
The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented
Performance of a small size telescope (SST-1M) camera for gamma-ray astronomy with the Cherenkov Telescope Array
The foreseen implementations of the Small Size Telescopes (SST) in CTA will
provide unique insights into the highest energy gamma rays offering fundamental
means to discover and under- stand the sources populating the Galaxy and our
local neighborhood. Aiming at such a goal, the SST-1M is one of the three
different implementations that are being prototyped and tested for CTA. SST-1M
is a Davies-Cotton single mirror telescope equipped with a unique camera
technology based on SiPMs with demonstrated advantages over classical
photomultipliers in terms of duty-cycle. In this contribution, we describe the
telescope components, the camera, and the trigger and readout system. The
results of the commissioning of the camera using a dedicated test setup are
then presented. The performances of the camera first prototype in terms of
expected trigger rates and trigger efficiencies for different night-sky
background conditions are presented, and the camera response is compared to
end-to-end simulations.Comment: All CTA contributions at arXiv:1709.0348
- …