16 research outputs found

    Dinamika populacije kvasca pri spontanim i induciranim alkoholnim fermentacijama vinskog mošta Zametovka

    Get PDF
    Inoculated fermentations, which are more rapid and more reliable than spontaneous fermentations, and assure predictable wine quality, are nowadays prevalent in Slovenia’s large-scale wine production. However, spontaneous fermentation strengthens local characteristics of wine and offers opportunities for technological innovation. In the 1999 vintage, spontaneous and inoculated fermentations of Zametovka (Vitis vinifera) grape must were studied. Zametovka is the main red variety in production of traditional Slovene red blend wine, Cvicek. The diversity of yeast species and strains in both of the investigated fermentations was determined by molecular and traditional identification methods. The outset of alcoholic fermentation, yeast growth kinetics, and yeast population dynamics presents the main differences between the examined fermentations. Yeast population diversity was higher in the spontaneous process. Dominant yeast isolates from spontaneous fermentation were identified as Candida stellata, Hanseniaspora uvarum and Saccharomyces cerevisiae; whereas Saccharomyces bayanus, Pichia kluyveri, Pichia membranifaciens and Torulaspora delbrueckiim were found less frequently. Dominant species in the inoculated fermentation was Saccharomyces cerevisiae; other species found in smaller numbers were Candida stellata, Hanseniaspora uvarum and Debaryomyces hansenii var. hansenii. Using PFGE, we were able to distinguish among 15 different Saccharomyces cerevisiae strains and three different Saccharomyces bayanus strains isolated from spontaneous fermentation, whereas, in the case of inoculated fermentation, only two Saccharomyces cerevisiae strains were found. Their chromosomal patterns coincide with the chromosomal patterns of the starter culture strains.U dana{njoj industrijskoj proizvodnji vina u Sloveniji prevladava inducirana fermentacija koja je brža i pouzdanija od spontane, a osigurava predvidivu kvalitetu vina. Spontana fermentacija pospješuje lokalne specifičnosti vina i omogućuje tehnološke inovacije. U berbi 1999. provedena je spontana i inducirana fermentacija mošta Zametovka (Vitis vinifera). Zametovka je glavna sorta crnog vina u proizvodnji Cvičeka, tradicionalnog slovenskog crnog vina. Raznolikost vrsta i sojeva kvasca u obje ispitivane fermentacije utvrđena je primjenom fizioloških i molekularnih testova. Glavne razlike između ispitivanih fermentacija sastojale su se u različitom početku alkoholne fermentacije, u kinetici rasta i dinamici populacije kvasca. Raznolikost u populaciji kvasca bila je veća pri spontanom procesu. Kao dominantni izolati kvasca pri spontanoj fermentaciji utvrđeni su Candida stellata, Hanseniaspora uvarum i Saccharomyces cerevisiae a rjeđe su se pojavljivali Saccharomyces bayanus, Pichia kluyveri, Pichia membranifaciens i Torulaspora delbrueckii. Pri induciranoj fermentaciji dominantna je vrsta Saccharomyces cerevisiae, a nađen je manji broj vrsta Candida stellata, Hanseniaspora uvarum i Debaryomyces hansenii var. hansenii. Koristeći gel-elektroforezu u pulsirajućem polju (PFGE), iz mošta pri spontanoj fermentaciji izolirano je 15 razli~itih sojeva Saccharomyces cerevisiae i tri različita soja Saccharomyces bayanus, a u induciranoj fermentaciji opažena su samo dva soja Saccharomyces cerevisiae. Njihova kromosomska struktura podudara se sa strukturom kromosoma soja starter-kulture

    Evaluation of probiotic potential of yeasts isolated from traditional cheeses manufactured in Serbia and Croatia

    Get PDF
    The aim of this study was to investigate the in vitro probiotic potential of dairy yeast isolates from artisanal cheeses manufactured in Serbia and Croatia. Methods. Twelve yeast strains isolated in from artisanal fresh soft and white brined cheeses manufactured in Serbia and Croatia were used in the study. Survival in chemically-simulated gastrointestinal conditions, adherence to epithelial intestinal cells and proliferation of gut-associated lymphoid tissue (GALT) cells were evaluated. Results. The results revealed that two strains of Kluyvereomyces lactis ZIM 2408 and ZIM 2453 grew above one log unit ( and #916; log CFU/ml) in the complex colonic medium during 24 h of cultivation, while Torulaspora delbrueckii ZIM 2460 was the most resistant isolate in chemically-simulated conditions of gastric juice and upper intestinal tract. It was demonstrated that the strains Kluyvereomyces lactis ZIM 2408 and ZIM2441 and Saccharomyces cerevisiae ZIM 2415 were highly adhesive to Caco-2 cells, while strains Kluyvereomyces lactis ZIM 2408 and Debaryomyces hansenii ZIM 2415 exhibit the highest adhesion percentage to HT29-MTX cells. All strains significantly (p lt 0.0001) decreased the proliferation of gut-associated lymphoid tissue (GALT) cells suggesting the possible strain-specific immunomodulatory potential of the isolates. Conclusion. The dairy yeast isolates exhibit the strain-specific probiotic properties. Particularly, the strain K. lactis ZIM 2408 appears to be the best probiotic candidate in terms of all three criteria. Taking into account their immunomodulatory potential, the yeast isolates could be further tested for specific probiotic applications and eventually included in functional food formulated for patients suffering from diseases associated with an increased inflammatory status.[http://www.jocmr.com/fulltext/55-1410953223.pdf?1669198006

    Evaluation of autochthonous lactic acid bacteria as starter cultures for production of white pickled and fresh soft cheeses

    Get PDF
    In order to preserve the traditional manufacturing of white pickled (WPC) and fresh soft cheeses (FSC), well-characterized autochthonous lactic acid bacteria (LAB) with advantageous characteristics were applied for the production of the cheeses at small industrial scale under the controlled conditions. Selected LAB for design of defined mixed starter cultures belonged to Lactococcus lactis ZGBP5-9, Enterococcus faecium ZGPR1-54 and Lactobacillus plantarum ZGPR2-25 for FSC production and to Lc. lactis BGAL1-4, Lactobacillus brevis BGGO7-28 and Lb. plantarum BGGO7-29 for WPC production. A sensory evaluation indicated that the cheeses obtained by inoculation with selected autochthonous LAB are similar to the traditional cheese and received the best scores. Viable cell counts of LAB used for the production of both type chesses was high, over 10(6) cfu g(-1). High viability of the surveyed strains was supported with PCR-DGGE, which confirm the retention of selected LAB strains as starter cultures in cheese production. Next, PFGE analysis showed that each single strains, selected in particular cheese mixed culture, revealed unique SmaI PFGE pattern that could enable efficient discrimination and monitoring of the strains in industrial process. As some of the selected LAB strains are attributed as potential probiotics, produced cheeses could be considered as functional food

    Extensive loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts

    Get PDF
    Cell-cycle checkpoints and DNA repair processes protect organisms from potentially lethal mutational damage. Compared to other budding yeasts in the subphylum Saccharomycotina, we noticed that a lineage in the genus Hanseniaspora exhibited very high evolutionary rates, low Guanine–Cytosine (GC) content, small genome sizes, and lower gene numbers. To better understand Hanseniaspora evolution, we analyzed 25 genomes, including 11 newly sequenced, representing 18/21 known species in the genus. Our phylogenomic analyses identify two Hanseniaspora lineages, a faster-evolving lineage (FEL), which began diversifying approximately 87 million years ago (mya), and a slower-evolving lineage (SEL), which began diversifying approximately 54 mya. Remarkably, both lineages lost genes associated with the cell cycle and genome integrity, but these losses were greater in the FEL. E.g., all species lost the cell-cycle regulator WHIskey 5 (WHI5), and the FEL lost components of the spindle checkpoint pathway (e.g., Mitotic Arrest-Deficient 1 [MAD1], Mitotic Arrest-Deficient 2 [MAD2]) and DNA-damage–checkpoint pathway (e.g., Mitosis Entry Checkpoint 3 [MEC3], RADiation sensitive 9 [RAD9]). Similarly, both lineages lost genes involved in DNA repair pathways, including the DNA glycosylase gene 3-MethylAdenine DNA Glycosylase 1 (MAG1), which is part of the base-excision repair pathway, and the DNA photolyase gene PHotoreactivation Repair deficient 1 (PHR1), which is involved in pyrimidine dimer repair. Strikingly, the FEL lost 33 additional genes, including polymerases (i.e., POLymerase 4 [POL4] and POL32) and telomere-associated genes (e.g., Repressor/ activator site binding protein-Interacting Factor 1 [RIF1], Replication Factor A 3 [RFA3], Cell Division Cycle 13 [CDC13], Pbp1p Binding Protein [PBP2]). Echoing these losses, molecular evolutionary analyses reveal that, compared to the SEL, the FEL stem lineage underwent a burst of accelerated evolution, which resulted in greater mutational loads, homopolymer instabilities, and higher fractions of mutations associated with the common endogenously damaged base, 8-oxoguanine. We conclude that Hanseniaspora is an ancient lineage that has diversified and thrived, despite lacking many otherwise highly conserved cell-cycle and genome integrity genes and pathways, and may represent a novel, to our knowledge, system for studying cellular life without them.Fil: Steenwyk, Jacob L.. Vanderbilt University; Estados UnidosFil: Opulente, Dana A.. University of Wisconsin; Estados UnidosFil: Kominek, Jacek. University of Wisconsin; Estados UnidosFil: Shen, Xing-Xing. Vanderbilt University; Estados UnidosFil: Zhou, Xiaofan. South China Agricultural University; ChinaFil: Labella, Abigail L.. Vanderbilt University; Estados UnidosFil: Bradley, Noah P.. Vanderbilt University; Estados UnidosFil: Eichman, Brandt F.. Vanderbilt University; Estados UnidosFil: Cadez, Neza. University of Ljubljana; EsloveniaFil: Libkind Frati, Diego. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; ArgentinaFil: DeVirgilio, Jeremy. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Hulfachor, Amanda Beth. University of Wisconsin; Estados UnidosFil: Kurtzman, Cletus P.. United States Department of Agriculture. Agricultural Research Service; ArgentinaFil: Hittinger, Chris Todd. University of Wisconsin; Estados UnidosFil: Rokas, Antonis. Vanderbilt University; Estados Unido

    Hanseniaspora nectarophila sp nov., a yeast species isolated from ephemeral flowers

    No full text
    Seven apiculate yeast strains that were isolated from the flowers of Syphocampylus corymbiferus Pohl in Brazil are genetically, morphologically and phenotypically distinct from recognized species of the genera Hanseniaspora and Kloeckera. Genetic discontinuities between the novel strains and their closest relatives were found using a networking approach based on the concatenated sequences of the rRNA gene (internal transcribed spacer and D1/D2 of the LSU), and the protein-coding genes for actin and translation elongation factor-1 alpha. Phylogenetic analysis based on the rRNA and the actin gene placed the novel species represented by the strains in close relationship to Hanseniaspora meyeri and Hanseniaspora clermontiae. PCR fingerprinting with microsatellite primers confirmed the genetic heterogeneity of the novel species. The name Hanseniaspora nectarophila sp. nov. is proposed, with UFMG POG a.1(T) (=ZIM 2311(T)=CBS 13383(T)) as the type strain; MycoBank no. MB807210. As the current description of the genus does not allow the presence of multilateral budding, an emended diagnosis of the genus Hanseniaspora Zikes is proposed.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Yeast Population Dynamics in Spontaneous and Inoculated Alcoholic Fermentations of Zametovka Must

    No full text
    Inoculated fermentations, which are more rapid and more reliable than spontaneous fermentations, and assure predictable wine quality, are nowadays prevalent in Slovenia’s large-scale wine production. However, spontaneous fermentation strengthens local characteristics of wine and offers opportunities for technological innovation. In the 1999 vintage, spontaneous and inoculated fermentations of Zametovka (Vitis vinifera) grape must were studied. Zametovka is the main red variety in production of traditional Slovene red blend wine, Cvicek. The diversity of yeast species and strains in both of the investigated fermentations was determined by molecular and traditional identification methods. The outset of alcoholic fermentation, yeast growth kinetics, and yeast population dynamics presents the main differences between the examined fermentations. Yeast population diversity was higher in the spontaneous process. Dominant yeast isolates from spontaneous fermentation were identified as Candida stellata, Hanseniaspora uvarum and Saccharomyces cerevisiae; whereas Saccharomyces bayanus, Pichia kluyveri, Pichia membranifaciens and Torulaspora delbrueckiim were found less frequently. Dominant species in the inoculated fermentation was Saccharomyces cerevisiae; other species found in smaller numbers were Candida stellata, Hanseniaspora uvarum and Debaryomyces hansenii var. hansenii. Using PFGE, we were able to distinguish among 15 different Saccharomyces cerevisiae strains and three different Saccharomyces bayanus strains isolated from spontaneous fermentation, whereas, in the case of inoculated fermentation, only two Saccharomyces cerevisiae strains were found. Their chromosomal patterns coincide with the chromosomal patterns of the starter culture strains

    Hanseniaspora smithiae sp. nov., a Novel Apiculate Yeast Species From Patagonian Forests That Lacks the Typical Genomic Domestication Signatures for Fermentative Environments

    No full text
    During a survey of Nothofagus trees and their parasitic fungi in Andean Patagonia (Argentina), genetically distinct strains of Hanseniaspora were obtained from the sugar-containing stromata of parasitic Cyttaria spp. Phylogenetic analyses based on the single-gene sequences (encoding rRNA and actin) or on conserved, single-copy, orthologous genes from genome sequence assemblies revealed that these strains represent a new species closely related to Hanseniaspora valbyensis. Additionally, delimitation of this novel species was supported by genetic distance calculations using overall genome relatedness indices (OGRI) between the novel taxon and its closest relatives. To better understand the mode of speciation in Hanseniaspora, we examined genes that were retained or lost in the novel species in comparison to its closest relatives. These analyses show that, during diversification, this novel species and its closest relatives, H. valbyensis and Hanseniaspora jakobsenii, lost mitochondrial and other genes involved in the generation of precursor metabolites and energy, which could explain their slower growth and higher ethanol yields under aerobic conditions. Similarly, Hanseniaspora mollemarum lost the ability to sporulate, along with genes that are involved in meiosis and mating. Based on these findings, a formal description of the novel yeast species Hanseniaspora smithiae sp. nov. is proposed, with CRUB 1602H as the holotype.Fil: Cadez, Neza. University of Ljubljana; EsloveniaFil: Bellora, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales; ArgentinaFil: Ulloa, José Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Tome, Miha. University of Ljubljana; EsloveniaFil: Petkovic, Hrvoje. University of Ljubljana; EsloveniaFil: Groenewald, Marizeth. Westerdijk Fungal Biodiversity Institute; Países BajosFil: Hittinger, Chris Todd. University of Wisconsin; Estados UnidosFil: Libkind Frati, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales; Argentin
    corecore